WMCSA 2004 December 2nd, Low Wood, Lake Windermere (UK)

Physical Posters as Gateways to Context-aware Services for Mobile Devices

Enrico Rukzio, Albrecht Schmidt, Heinrich Hussmann Media Informatics Group, University of Munich

Overview

- Why are mobile services so rarely used?
- Idea / Solution
- Related work
- Scenario
- Analysis
 - Categories of poster displays
 - Observing people at stops
 - Questionnaire
- Architecture
- Prototype
 - Architecture
 - Second iteration
- Conclusion / Outlook

Why are mobile services so rarely used?

- Technically it's already possible to use mobile services (WAP, i-mode)
- Why are they so rarely used (in Germany/Europe)?
 - Service Discovery
 - Does a mobile service of the local public transport organization exist?
 - What's the URL?
 - Solution: Google Wireless Search (not yet!)
 - Service Protocol Discovery
 - WAP, i-mode / cHTML, XHTML
 - Network Discovery
 - GPRS, UMTS, WLAN, Bluetooth
 - Cost / Speed

Idea / Solution?

- Use ubiquitously available artifacts in public as gateways to mobile services
- Pervasive advertising poster
 - → Mobile services that are related to the shown info
- How to establish the connection?
 - Marker on poster represents service, service
 - protocol, network
 - Usage of built-in camera as sensor
- Network: Provided by the advertising company (integrated WLAN/Bluetooth-access point in an advertising column)
 - → Cost aspect

Related Work

- HPs Cooltown [1]
 - Web presence for people, places, things
 - ■PDA + infrared beacons
- 505 series models of NTT DoCoMo have an integrated QR Code reader
- Rohs and Gfeller [2]
 - Usage of camera-equipped mobile phones
- Cybercode (Sony) [3]
 - Visual tagging system for augmented reality
 - 2D-barcode
 - •3D position of the tagged object
- → Technically possible, Metaphor "Physical Browsing"
- → Usage of public posters: new application area
- →Analysis

Scenarios

- John recognizes movie poster on a advertising column → promotes a new film
- Interaction (focus the marker with the mobile phone)
- Usage of built-in Bluetooth access point
- Accessing the i-mode webpage
- Watches movie trailer + download
- Download further information (When & Where played)
- Shows all to his girlfriend in the evening → watch the movie

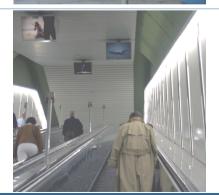
Categories of Poster Displays

Viewing time

User chosen

Determined by circumstance

Approachable



Physical Accessibility

Distance

Observing People and Their Behaviour

- Observed people and their behaviour while they waited for public transport (nearby posters)
 - •How long do they wait?
 - Activities during waiting
- Observed 230 passengers / 3 different locations
- 3 different observers one form
 - For every passenger one row
 - Passenger = {description, arrival, departure, holds in hands, activities, part of a group}

Date/Time:		I	Place:				
Frequency of departures:							
	User	Arrival	Departure	Hands(1/r)	Activity	Group	
	(Description)	(min/s)	(min/s)				
1							

Observing People and Their Behaviour

Waiting time t (in seconds)	Spot check 1 (in percent)	Spot check 2 (in percent)	
0 ≤ t ≤ 60	32	8	
60 < t ≤ 120	12	14	
120 < t ≤ 180	12	15	
180 < t ≤ 240	11	9	
240 < t ≤ 300	8	15	
300 < t ≤ 360	5	4	
360 < t ≤ 420	6	7	
420 < t ≤ 480	3	11	
480 < t ≤ 540	7	15	
540 < t	4	2	
Time between two busses / trams	5 minutes	10 minutes	
Average waiting time	3 min 13 sec 4 min 37 sec		

Observing People and Their Behaviour

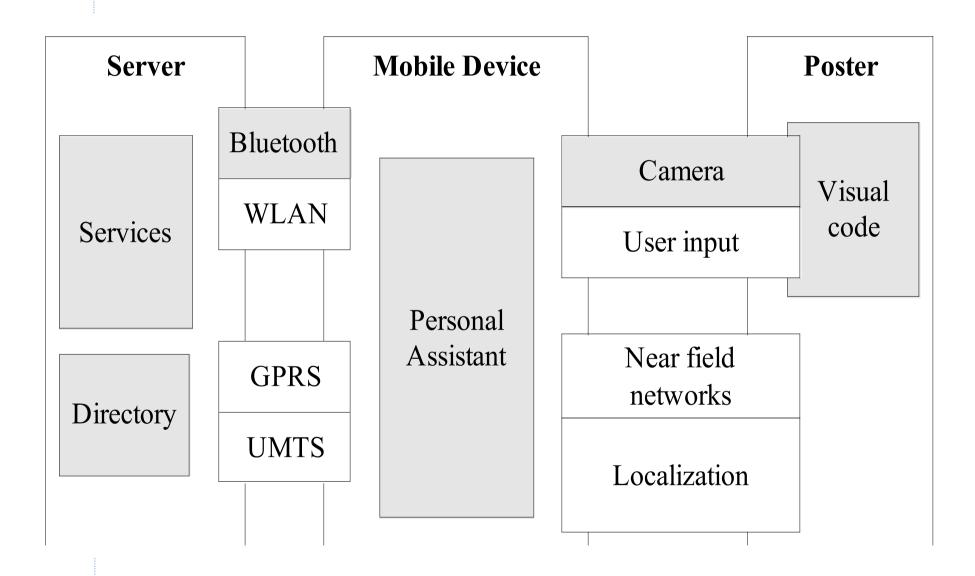
- What did people do?
 - Mostly nothing
 - Talking 20% in the afternoon
 - Calling 8% in the afternoon
 - ■Waiting time < 4 minutes → people did not read</p>
- "Killing time is a killer application" [4]
 - Usage of mobile services during waiting time
- → Requirements
 - Connection to mobile service established in a short time
 - User should be able to move afterwards (Bus arrives, driving with the bus)

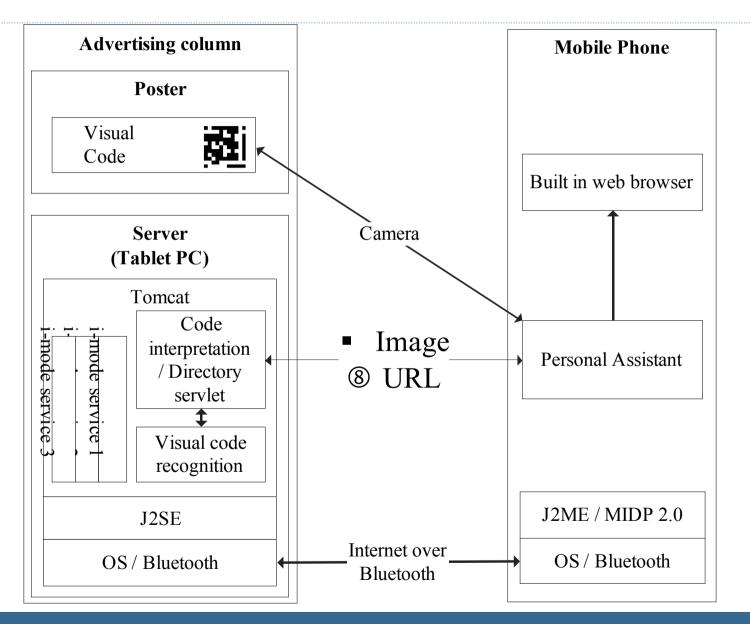
Expectations in Mobile Services

- Web based interview (May/June 2004)
 - •Which mobile services potential users might connect with an advertisement poster?

Steps

- Introducing a mobile future
- •Example (motion picture ad mobile services)
- 1st form: 8 posters + big input area
- 2nd form: 8 posters + rate proposed services
- 3rd form: statistical data (gender, age, etc,)


→ 39 participants


Expectations in Mobile Services

- People potentially very interested in the usage of mobile services
- Participants could imagine a large set of different services connected with different posters
- Mostly: Getting information / not buying
 - Car rental: special offers and prices (84%)
 - •Home entertainment: technical information (55%)
- Interested in buying when offer limited
 - Reserving a ticket for a concert (68%)
 - Looking for and booking available flights (87%)
- Location based services
 - ■Where is the closest store (58%)
- → Convergence in expected services (2-5)

Overall Architecture

Prototype: Architecture

Prototype: Second iteration

- Hardware:
 - ■Two different phones (Nokia 6600, Siemens S65)
 - ■Tablet PC (Compaq TC 1000)
- Mobile Phone
 - APIs
 - MIDP 2.0 CLDC 1.0/1.1
 - Mobile Media API (JSR-135), Bluetooth API (JSR-82)
 - Java J2ME code snippets can be found under www.hcilab.org (Documentation)
 - Camera performance
 - Image transfer to a servlet on a server
 - Bluetooth connection
- Server
 - Tomcat (Servlets)
 - Visual code recognition "visual codes" (ETH Zurich)

Prototype: Second iteration

- Practical course works on implementation
- Focus a marker → Webpage on the mobile phone
 - Less then 2 seconds
- First prototype of the advertising column
- 4 posters / 4 services (train, weather, bank, cinema)
- Display (Tablet PC) in the advertising column
- User passes by: advertising column starts interaction

Conclusion & Outlook

- Conclusion
 - Physical browsing well-known interaction metaphor
 - Pervasive advertising posters + people spent time nearby doing mostly nothing
 - People could associate mobile services with advertising posters, interested in
 - Technically feasible
- Next steps
 - Deploying the prototype
 - User studies with potential costumers (Do "normal" people understand physical browsing?
 How do they use the mobile services? What do they think about context awareness? Would they

Questions

- Acknowledgments
 - Our students doing the second iteration of implementation

- European Project Simplicity www.ist-simplicity.org
- •DFG Embedded Interaction www.hcilab.org
- Nokia and Siemens for lending us mobile phones

References

- [1] Kindberg, T.; Barton, J.; Morgan, J.; Becker, G.; Caswell, D.; Debaty, P.; Gopal, G.; Frid, M.; Krishnan, V.; Morris, H.; Schettino, J.; Serra, B.; Spasojevic, M. 2002. People, Places, Things: Web Presence for the Real World. In: Mobile Networks and Applications, 7(5):365–376, 2002.
- [2] Rohs, M.; Gfeller, B. 2004. Using Camera-Equipped Mobile Phones for Interacting with Real-World Objects. In: Alois Ferscha, Horst Hoertner, Gabriele Kotsis (Eds.): Advances in Pervasive Computing, Austrian Computer Society (OCG), ISBN 3-85403-176-9, pp. 265-271, Vienna, Austria, April 2004.
- [3] Rekimoto, J.; Ayatsuka, Y. 2000. CyberCode: Designing Augmented Reality Environments with Visual Tags. In: Proceedings of DARE, Designing Augmented Reality Environments, 2000.
- [4] Nielsen, J. 2000. Killing time is the killer application. In: TheFeature: It's all about the mobile internet. 2000. http://www.thefeature.com/article?articleid=8183