Analysis of wide area user mobility patterns

Kevin Simler*, Steven E. Czerwinski[†], Anthony Joseph

UC Berkeley 2004/12/02

* Now at MIT

[†] Now at Google

- We want to understand user behavior

 In order to design better systems
 In order to generate synthetic traces
 In order to model user behavior

 How can we capture user presence in the
 - wide area?

- We want to understand user behavior
 In order to design better systems
 In order to generate synthetic traces
 In order to model user behavior
 How can we capture user presence in the
 - wide area?

web

- We want to understand user behavior

 In order to design better systems
 In order to generate synthetic traces
 In order to model user behavior

 How can we capture user presence in the
 - wide area?
 - web, IM

- We want to understand user behavior

 In order to design better systems
 In order to generate synthetic traces
 In order to model user behavior

 How can we capture user presence in the
 - wide area?

web, IM, ..., e-mail

Why e-mail?

- E-mail is a widely-used service
- User typically checks e-mail first
- Berkeley provides IMAP + web front end
 □ Any Internet connection → e-mail access

E-mail reflects users' Internet presence

Outline

- Background
- Analysis and results
- User modeling
- Future work
- Summary

Trace characteristics

- **31-days** (May 2003)
- Server from UC Berkeley EECS dept.
 Regular IMAP plus web front-end
- 1004 active users, primarily:
 - □ Professors
 - □ Graduate students
 - □ Support staff
- Tracked across different service providers

Building on previous work

Wireless Campus Studies

- □ Mobility on a campus
- □ Single service provider with homogenous users
- Tang & Baker, Kotz & Essien, Balazinska & Castro

Metricom WLAN

- □ Mobility across/between cities
- Single service provider with more diverse users
 Tang & Baker

Trace data

Each entry in the trace includes:
 Timestamp (seconds)
 Request type (*login*, *close*, *select*, etc.)
 Username
 IP address

Preprocessing

- We want user behavior
- Trace records client application behavior
 Outlook, Eudora, Thunderbird, etc.
- Primary difference:

Client polls for new e-mail at regular intervals
 Fixed period per client, variable across clients

Client connections from a single user:

Use a Fourier transform to identify polling period *p*.

$\longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow$

Identify sequence separated by *p*. Remove all but the first connection.

> 15 minute gap \leftrightarrow \longrightarrow \longrightarrow \longrightarrow

Clump connections into user sessions

Now we have (roughly) a trace of user behavior

Outline

Background

Trace analysis

- Defining location
- Daily mobility
- Monthly mobility
- Session activity
- User modeling
- Future work
- Summary

Defining network location

- Connection used to access the Internet

 E.g. a dialup ISP, campus wireless network

 Approximated by a combination of

 Authoritative DNS server
 AS number
 - □ AS number
 - Subnet

How many unique subnets do they visit?
How many unique AS #s do they visit?

Let's look at a graph....

Outline

Background Trace analysis User modeling Categorizing users □ Model structure Training and testing Future work Summary

Categorizing users

- Based on number of primary locations
- For a given user, a primary location is:
 - \Box One where the user spends >5% of the time

Categories

- □ Users with 1 primary location
- □ Users with 2 primary locations
- □ Users with 3+ primary locations

Structure of our models

- One model for each category
 Two-tiered Markov model

 High-level states represent user's location
 Low-level states represent user's activity
- Both MMs are 1st order

Model structure for category 2

2 primary locations + 1 traveling state

Model structure for category 2

2 primary locations + 1 traveling state

High-level (location) states

Model structure for category 2

2 primary locations + 1 traveling state

Low-level (session) states I.e. Logged-In and Logged-Out

Training

- We have all the information
 Which locations are primary
 Where the user is, at any time
 When the user is logged in/out
- Simple to compute transition probabilities

Testing methodology

- Create synthetic trace
- Chose metrics to measure a trace
- Compare real trace with synthetic trace

Testing one metric

- # of sessions between visits to primary
 Each user visits his primary
 leaves to visit other locations
 then comes back to his primary
 Every time this happens, record the
 - number of other locations
- There will be a CDF for the entire trace (real or synthetic)

Testing results

Outline

Background
Trace analysis
User modeling
Future work

Summary

Using the results

- Synthetic traces can help test systems
- User behavior has implications for design
 - □ E.g. focus resources on primary locations
- Model can predict user behavior on-the-fly
 - \Box E.g. to cache, or not to cache?

As technology changes...

Blackberries

- More physical locations
- Shorter, more frequent sessions
- Still, primary locations will be important

Wireless LAN hotspots More network locations

Outline

Background
Trace analysis
User modeling
Future work

Summary

Summary – what we've done

- Obtained a trace from an e-mail server
- Filtered out client polling
- Analyzed trace of user behavior
- Modeled categories of users with tiered MM
- Generated synthetic traces

Summary – user behavior

- Most users log in from 1 or 2 locations
- But a few users are highly mobile
- Users access e-mail infrequently, but for long periods of time

Thank you

Quick clarifying questions?