

Cell-ID location technique, limits and benefits: an experimental study.

Emiliano Trevisani Andrea Vitaletti

Overview

□ Motivation

- □ Cell-ID Background
- □ Contribution
- □ Cell-ID performance
- □ Summary
- □ Cell-ID and VXML
- □ Conclusions and future works

Motivation

□ Location techniques providing good accuracy, require substantial technological and financial investment.

□ Cell-ID positioning is low cost and it is available now!

□ "We all know that cell-id is too coarse and too uncertain to be of much use as a source of user location", but there are very few preliminary study evaluating Cell-ID performance by experiments. Background

PRO:

Low cost

□ No upgrades

Privacy

CON:

□ Accuracy (cell size may range from some meters to some kilometers)

□ Proximity (effectivness)

□ You must know cell planning

Contribution

□ We present the results of some experiments on Cell-ID performances ran both in U.S. (NY area) and in E.U. (Rome area) and in three distinct contexts: urban, suburban and highway

□ Our experiments do not try to be complete, our goal rather is providing a framework in which Cell-ID performance can be objectively assessed.

□ We show how Cell-ID can be effectively exploited in the context of Voice Location Based Services.

□ Evaluated by experiments in cooperation with AT&T in US (CDPD) and WIND in Italy (GSM) in three contexts:

- □ URBAN (high density of BTSs, small/medium cell size)
- □ SUBURBAN (average density of BTSs, medium/big cell size)
- □ HIGWAY (low density of BTSs, big cell size)

\Box Average distance *E*(Δd) between the GPS position ("actual position") and the estimated Cell-ID position calculated over all the samples in the log file.

SPOT of connectivity in populated areas
MS at the boundary of 2 loc. areas
Net. planning.
CDPD is allowed to transmit only when freqs. are

not used by voice - SHADOW SAT: NY skyscreapers (canion effect) and NJ forests

	URBAN	SUBURBAN	HIGHWAY
Samples	2075	2114	636
Useful	96%	94%	97%
σ	0.36Km	0.82Km	0.64Km
Min.	0.03Km	0.05 Km	0.19Km
Max.	2.68Km		3.67Km
	URBAN	SUBURBAN	HIGHWAY
Samples	URBAN 2237	SUBURBAN 665	HIGHWAY 1188
Samples Useful	URBAN 2237 82%	SUBURBAN 665 57%	HIGHWAY 1188 44%
Samples Useful	URBAN 2237 82%	SUBURBAN 665 57%	HIGHWAY 1188 44%
Samples Useful σ	URBAN 2237 82% 0.39Km	SUBURBAN 665 57% 0.38Km	HIGHWAY 1188 44% 2.00Km
Samples Useful σ Min.	URBAN 2237 82% 0.39Km 0.02Km	SUBURBAN 665 57% 0.38Km 0.11Km	HIGHWAY 1188 44% 2.00Km 0.95Km

	۰.						۰.		
 ۰.						•			
	۰.						τ.		
1.		٠							
						4			
			_	_	-				

□Cell-ID works under the implicit assumption that the MS is always connected to the closest BTS, but ...

- □ Multipath propagation
- □ BTS transmission power (defined at cell planning)
- □ Cell selection algorithm choices.

	URBAN	SUBURBAN	HIGHWAY
Samples	1775	1820	295
Close	43%	32%	39%

Cell-ID performance: Discovery Accuracy ann Discovery Noise

Resource discovery services: to locate a set of resources close enough to the customer's location

"Where are Chinese restaurants in my neighborhoods?" ... not the closest restaurant, but restaurants close enough.

□ Discovery Accuracy counts the fraction of resources near the actual position of a user, that can be either localized using his approximate position.

□ We also require that resources in the surrounding of the approximate position of the user are almost the same as those close to his actual position

Cell-ID performance: Discovery Accuracy and Noise

 \Box We would: A \rightarrow 1 and N \rightarrow 0

□ spread resources - bank and restaurants, average spread resources – pharmacies, low spreadresources – first aids.

 $\Box d \leq 0.8$ Km: Accuracy is always smaller than noise

□ d > 0.8 Km: A ~ N ~ 0.5

Cell-ID performance: fault frequency

D Percentage of samples with A = 0 but R_{Gps}^d not empty

□ Fault frequency is about 30%

d	1 Km	0.8 Km	0.5 Km	0.2 Km
Bank	32%	31%	31%	41%
Restaurant	28%	32%	35%	31%
First Aid	12%	18%	7%	1%
Pharmacy	29%	26%	36%	43%

□ Fault frequency may increase with distance d

Summary

- □ Motivation
- □ Cell-ID Background
- □ Contribution
- □ Cell-ID performances

All the above results show that Cell-ID is often too poor to provide location based service, but... We now show a new Voice XML (VXML) solution which takes a great advantage from the knowledge of Cell-ID.

Cell-ID and VXML

Conclusions and future works

VXML background

□ VoiceXML is the HTML of the voice web

Grammar defines what is valid user input.

□ Effectiveness and efficency of the Authomatic Speech Recognizer (ASR) strongly depend on the grammar size.

Cell-ID and VXML

□ The grammar of all the addresses in a city is big (thousand of addresses)

□ IDEA: Limit the grammar size by Cell-ID

A multimodal architecture (more)

□ Correct and complete vocal inputs ("via Margutta 45")

□ Cell-ID can speed-up the recognition process by more than a factor 10

Addresses	T upload	T rec
3405	7 sec.	2 sec.
21	0.6 sec.	0.2 sec.

Cell-ID and VXML: experiments

- □ Incomplete ("Margutta") and partially correct ("viale Margutta") inputs
- Grammar size (more than 45000 elements) is too big
- □ Reduced to 10000 elements, only 20% of inputs are recognized
- □ With Cell-ID 100% of inputs are recognized.
- □ Cell-ID can speed-up the recognition process by more than a factor 10

Addresses	T upload	T rec
45619	-	-
10000	40 sec.	7 sec.

314	1.2 sec.	0.6 sec.
-----	----------	----------

□ Cell-ID positioning is inexpensive and it does not require any upgrade of network or terminal equipments.

- □ Our experiments show that the quality of Cell-ID is often not appropriate to deploy even very simple location based services.
- □ Cell-ID can be exploited to provide more effective and efficient Voice Location-Based Services.
- □ Indeed, using Cell-ID we can considerably reduce the size of the recognition grammar, speeding up the recognition process by a factor larger than ten.
- □ Self localization on visual maps indexed by Cell-ID.