Ubiquitous Computing using Wireless Broadcast

Jong Hee Kang¹ Gaetano Borriello^{1,2}

University of Washington¹ Intel Research Seattle²

Ubiquitous Computing Applications

- Adapt their behaviors based on the user's current situation
 - e.g., current location, nearby devices
- Source of the situation information
 - Sensors
 - Services in the environment or the Internet

Building Applications – Infrastructure-based Approach

Basic idea

Applications and data sources live in the infrastructure

Advantages

- Users carry minimal devices
- A variety of data sources are readily available
- Works well for applications in engineered spaces

Problems

- Privacy
- Complexity/scalability
- Re-authentication required when crossing domains

Building Applications – Wearable Approach

- Basic idea
 - Applications and data sources (sensors) are all carried by the user
- Advantages
 - Privacy
 - No infrastructure cost
- Problems
 - Size and form factor
 - Battery life
 - Access to connectivity

Our Approach – <u>U</u>biquitous <u>B</u>roadcast <u>C</u>omputing

- Combining the best of both approaches
 - Applications on the client device for privacy
 - Data sources in the infrastructure
 - Use of wireless broadcast for the communication between applications and data sources

Example Application – Location System

Infrastructure-based approach

- Bat ultrasonic location system
 - Users carry ultrasound transmitter
 - Networked sensors in the infrastructure

Example Application – Location System

- Wearable approach
 - Scene analysis
 - Camera worn by users

Example Application – Location System

UBC approach

- GPS
 - □ Signal transmitted from satellites (infrastructure)
 - Receiver carried by the user

Characteristics

- Privacy
- Scalability
- Universality
- Incremental deployment
- Upgradeability
 - Comprehensibility

Characteristics

- Privacy —
- Scalability

Clients receive broadcast information silently without revealing anything about the user

- Universality
- Incremental deployment
- Upgradeability
- Comprehensibility

Characteristics

- Privacy
- Scalability
- Universality

Broadcast can support many users simultaneously without requiring more bandwidth

- Incremental deployment
- Upgradeability
- Comprehensibility

Characteristics

- Privacy
- Scalability
 - Universality[/]
 - Incremental deplo
- Upgradeability
- Comprehensibility

Clients do not need authentication, thus can work seamlessly across administrative domains

Infrastructure providers do not have to worry about compromising their network

Characteristics

- Privacy
- Scalability
- Universality
- Incremental deployment
- Upgradeability
- Comprehensibility

Infrastructure cost can be minimal (e.g., simple wireless sensors can be deployed in any environment without requiring connectivity)

Characteristics

- Privacy
- Scalability
- Universality
 - Incremental deployment
- Upgradeability —
- Comprehensibility

Broadcast data is self-describing and clients can easily find the appropriate parsers and applications for the data

Characteristics

- Privacy
- Scalability
- Universality
 - Incremental deployment
- Upgradeability
 - Comprehensibility

Broadcast communication provides easy-to-understand mental model

Application 1 – Place Lab

- Computes users' current position
- Data source: WiFi APs periodically broadcast their unique SSIDs
- Client device: computes its current position by looking up APs' SSID in client-cached database

Application 2 – RFID-based Reminder

- Alerts users when something is left behind
- Data source: long-range passive RFID readers in the environment read tags and broadcast the list of tags IDs
- Client application: checks if all the user's items that should be present are all there

Application 3 – Printer Queue Reminder

- Reminds users to pick up printed documents when they pass by a printer closet
- Broadcast data
 - Printer queues
 - RFID tags read in printer room
- Client app alerts the user if the list contains the user's documents

Broadcasting Infrastructure

Broadcast data

- Sensor data
- Information from non-sensor sources
- Capability tokens
- Broadcast channel guide information
- Broadcast medium
 - Short-range wireless technologies
 - □ WiFi, RF, ZigBee, UWB, ...

Client Toolkit

Related Work

□ TV, radio

- Microsoft SPOT: broadcasting digital data over sidebands of FM radio frequency
- Broadcast file systems
- HP Cooltown: URLs received over local IR channel and use to access object's web page over WiFi
- Location systems: passive listening
 - RightSPOT: FM radio version of Place Lab approach
 - RADAR: Place Lab approach with signal strength
 - MIT cricket: RF + ultrasound time of flight

Conclusion and Future Work

- Ubiquitous Broadcast Computing
 - Wireless broadcast of locally-relevant data
 - Privacy-friendly, scalable
- Future work
 - Building more applications
 - Scalability: coordinated use of bandwidth
 - Privacy for two-way communication

Question?