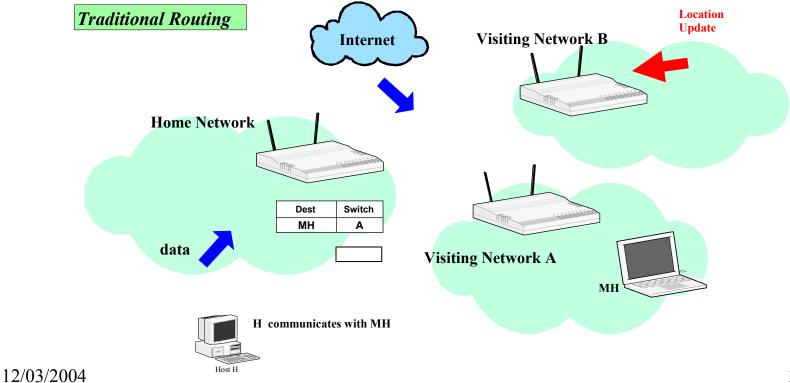


December 03 2004

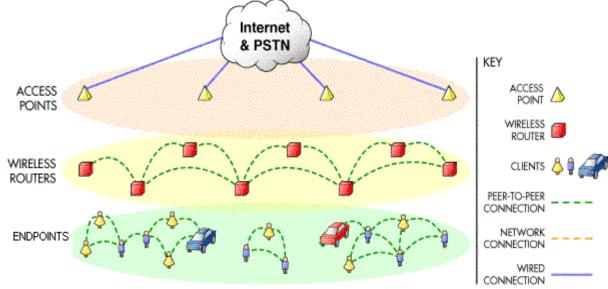
Fabrice Tchakountio Ram Ramanathan

Outline


- Problem Statement & Motivation
- Related Work
- Context For Our Study
- Anticipatory Routing
 - Algorithm Overview
 - Experimental Environment
 - Results and Analysis
- Conclusion

– Anticipatory Routing and its Applicability

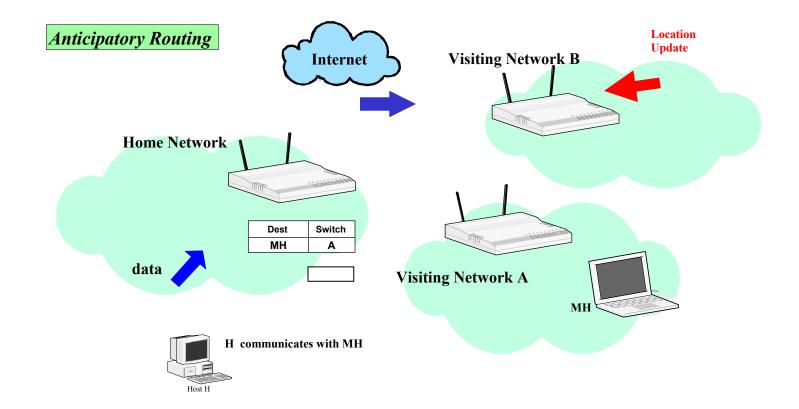
Problem Statement & Motivation


- All Mobile networks employ some control mechanism to route packets to mobile hosts.
 - Efficiency of control mechanism depends on two factors:
 - frequency of location change
 - time it takes to the system to know about that change.
 - But what if the frequency of change is so high?

BBN TECHNOLOBIES

Problem Statement & Motivation (cont'd)

- Wireless network architectures are evolving toward short links
 - Causes: need for high data rate, scarcity of communication spectrum, need to conserve battery, hence transmission power.
 - Consequence: increase in frequency of changes in network attachment points.
- Wireless network infrastructures (e.g wireless mesh networks/802.16) are increasing in size

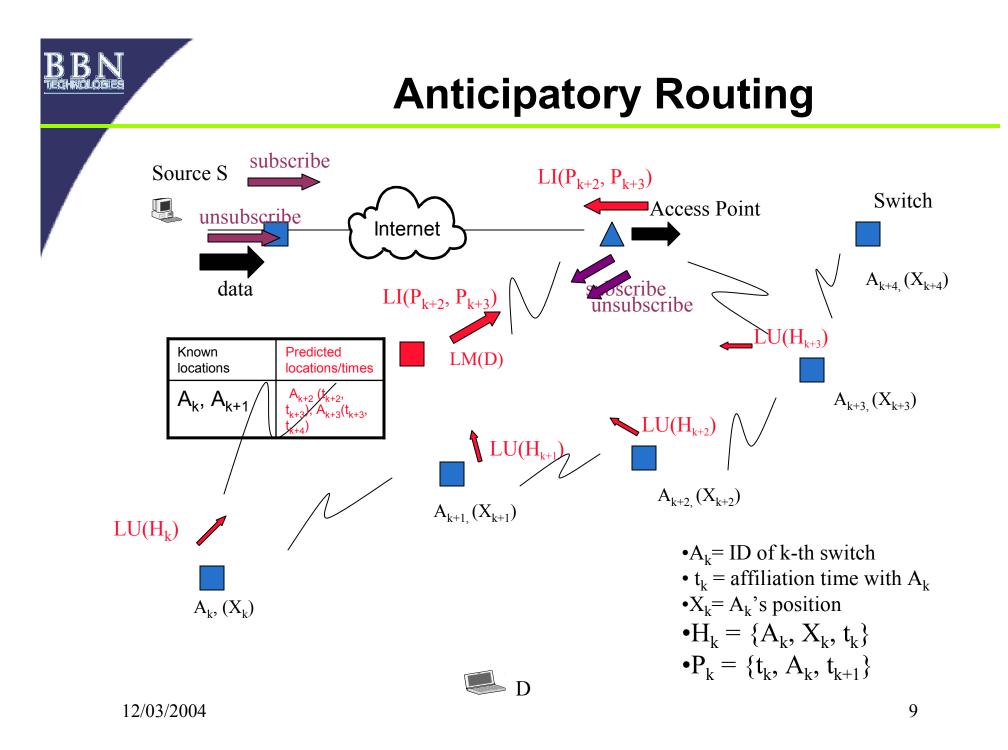

 Consequence: increase in control message latency, therefore increase in convergence time of the control mechanism.

Problem Statement & Motivation (cont'd)

- Higher frequency of change and higher time of convergence may lead to situations where control mechanism is constantly outpaced by endpoint's mobility
- It is not the absolute speed that matters, but its relation to cell size and convergence time of the system, hence notion of *effective mobility*
- Effective mobility (M_{eff}) = convergence time / cell presence time
 - When M_{eff} > 1, the system is constantly outpaced by endpoint's mobility and we say that the *reactive limit* has been reached

Problem Statement & Motivation (cont'd)

• For mobility regimes that take system beyond reactive limit, a predictive (or anticipatory) mechanism is required.


Related Work

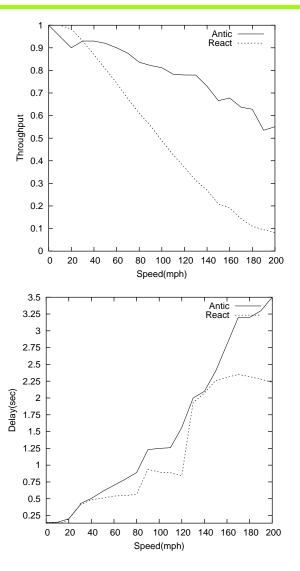
- Spray Routing (SR) attempts to address the problem of high mobility
 - SR multicasts data traffic in the vicinity of the last "known" location
 - Pros: SR improves the delivery rate
 - Cons: SR generates a significant overhead in duplicate data with increased mobility. SR is not effective beyond a certain effective mobility.
- A small amount of previous research has investigated ideas similar to "prediction of future locations based on history information"
 - Niculescu, Nath presents Trajectory-Based Forwarding (TBF), a method to forwards packets in a dense MANET based on a predefined trajectory curve.
 - Pathirana, et all propose a Robust Extended Kalman Filter (REKF) as an estimator in predicting the mobile user's trajectory.
 - Liu, Maguire propose a pattern matching/recognition-based mobile motion prediction (MMP) to estimate the user mobility.
- Anticipatory Routing is different from existing work in one key aspect: the reactability of the location tracking mechanism.

Context For Our Study

- Studying "Anticipatory Routing" required provision of a context for "Anticipatory Routing" operation
 - Architecture is generic enough, i.e, not tied to a particular standard
- Our network consists of Switches and Endpoints
 - An endpoint affiliates with a one-hop away switch.
 - Switch can handle one or more endpoints
 - Endpoint's affiliation is done proactively.
 - Switches are GPS-capable: GPS provides time synchronization and position information
- Traffic is stream-oriented (packetized voice, video)
- Our location tracking mechanism is rudimentary and borrows ideas from several known approaches
 - K switches act as location managers (LM).
 - An endpoint is mapped into one LM based on a simple hash.
 Endpoint updates LM through Location Update.
 - At session setup time, source subscribes with LM of destination.
- Routing protocol is a flat link-state protocol among switches.

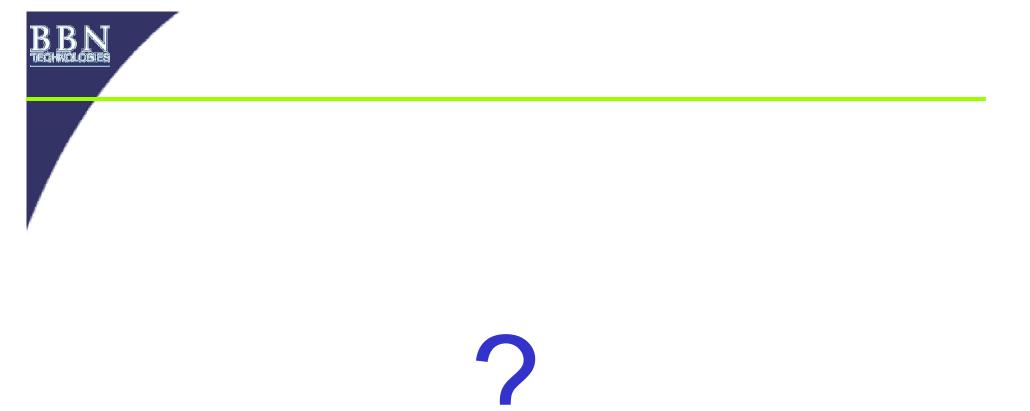
Anticipatory Routing (cont'd)

- Location Manager (LM) uses three basic steps to determine future locations and affiliation times
 - *Estimation of the endpoint's trajectory* as follows:
 - L = 2
 - 1. LM picks L and (L+1) latest positions $(X_{k-L-1}..X_k)$ and $(X_{k-L}..X_k)$
 - 2. For each set, LM derives two linear equations $(m_1,h_1) \& (m_2,h_2)$
 - 3. From (m_1, m_2) , directions (θ_1, θ_2) are determined
 - 4. If $|\theta_1 \theta_2| > \theta_{\text{thresh}}$, then endpoint has "turned" and (m_1, h_1) becomes the trajectory equation. Otherwise, L=L+1; goto step 1, etc..
 - Estimation of the endpoint's direction θ
 - Θ is determined from slope m, current position X_k and oldest history position $X_{k\text{-t}}$
 - Estimation of future location, affiliation/departure time
 - Future locations are derived from (m, h), last known position X_k and network topology
 - Affiliation/departure times to/from switch regions are a function of interswitch distance, estimated speed, switch diameter, etc..
- Upon data forwarding, switch-source selects final location based on delay estimate and set of anticipated locations and affiliation/departure times


Anticipatory Routing (cont'd)

- Experimental Environment
 - Simulator built from scratch using C++ to independently control performance between fidelity and running time.
 - Multihop wireless network generated by placing a set of S switches and E endpoints in an L x L square area.
 - S = 100; E=40; L=1km; switch radius = 80 meters
 - Switches are static
 - Free-space propagation with threshold cutoff.
 - Mobility model is an extended random walk model.
 - Area model is a "wraparound" model: no area boundary.
 - Queuing delay at each node is modeled: packet is delayed by a time roughly proportional to the congestion.
 - Traffic is stream-oriented
 - Packets within a session generated by bernouilli trials
 - Data rate = 200 kbps
 - This parameters reflect future trends, including an increased reliability on wireless relays to extend the reach.

Anticipatory Routing (cont'd)


- *Throughput (packet delivery ratio), Anticipated Fraction* and *Delay* are metrics of interest
- Analysis
 - AR does worse than traditional routing (TR) for speeds < 30mph
 - AR throughput ~92% around 30mph
 - AR performs better than TR above 30mph (throughput > 50%)
 - Loss-tolerant applications can benefit from this
 - Both AR and TR give rise to higher delays with increasing speed
 - Control message latency increases with frequency of affiliations, resulting in higher queueing delays

BBN TECHNOLOGIES

Conclusion

- Anticipatory Routing (AR) is a novel mechanism that addresses the problem of routing to highly mobile endpoints
 - AR improves throughput by 56% compared to traditional routing mechanisms in all cases studied
- In practice, AR might be applicable to
 - wireless broadband networks (e.g: wireless-MANs/"mesh extension") with a large and dense mobile user base
 - tactical networks with truck-mounted routers where situation awareness update of video/imagery data is critical

