Anticipatory Routing For Highly Mobile Endpoints

December 03 2004

Fabrice Tchakountio
Ram Ramanathan
Outline

• Problem Statement & Motivation
• Related Work
• Context For Our Study
• Anticipatory Routing
 – Algorithm Overview
 – Experimental Environment
 – Results and Analysis
• Conclusion
 – Anticipatory Routing and its Applicability
Problem Statement & Motivation

- All Mobile networks employ some control mechanism to route packets to mobile hosts.
 - Efficiency of control mechanism depends on two factors:
 - frequency of location change
 - time it takes to the system to know about that change.
 - But what if the frequency of change is so high?

Visiting Network A
Host H
MH
MH communicates with MH

Visiting Network B

Home Network

Traditional Routing

Internet
Problem Statement & Motivation (cont’d)

- Wireless network architectures are evolving toward short links
 - Causes: need for high data rate, scarcity of communication spectrum, need to conserve battery, hence transmission power.
 - Consequence: increase in frequency of changes in network attachment points.

- Wireless network infrastructures (e.g. wireless mesh networks/802.16) are increasing in size
 - Consequence: increase in control message latency, therefore increase in convergence time of the control mechanism.
Problem Statement & Motivation (cont’d)

- Higher frequency of change and higher time of convergence may lead to situations where control mechanism is constantly outpaced by endpoint’s mobility
- It is not the absolute speed that matters, but its relation to cell size and convergence time of the system, hence notion of *effective mobility*
- **Effective mobility** (M_{eff}) = *convergence time / cell presence time*
 - When $M_{eff} > 1$, the system is constantly outpaced by endpoint’s mobility and we say that the *reactive limit* has been reached
Problem Statement & Motivation (cont’d)

- For mobility regimes that take system beyond reactive limit, a predictive (or anticipatory) mechanism is required.
Related Work

- **Spray Routing (SR)** attempts to address the problem of high mobility
 - SR multicasts data traffic in the vicinity of the last “known” location
 - Pros: SR improves the delivery rate
 - Cons: SR generates a significant overhead in duplicate data with increased mobility. SR is not effective beyond a certain effective mobility.

- A small amount of previous research has investigated ideas similar to “prediction of future locations based on history information”
 - Niculescu, Nath presents Trajectory-Based Forwarding (TBF), a method to forwards packets in a dense MANET based on a predefined trajectory curve.
 - Pathirana, et all propose a Robust Extended Kalman Filter (REKF) as an estimator in predicting the mobile user’s trajectory.
 - Liu, Maguire propose a pattern matching/recognition-based mobile motion prediction (MMP) to estimate the user mobility.

- Anticipatory Routing is different from existing work in one key aspect: the reactability of the location tracking mechanism.
Context For Our Study

• Studying “Anticipatory Routing” required provision of a context for “Anticipatory Routing” operation
 – Architecture is generic enough, i.e, not tied to a particular standard
• Our network consists of *Switches* and *Endpoints*
 – An endpoint affiliates with a one-hop away switch.
 – Switch can handle one or more endpoints
 – Endpoint’s affiliation is done proactively.
 – Switches are GPS-capable: GPS provides time synchronization and position information
• Traffic is stream-oriented (packetized voice, video)
• Our location tracking mechanism is rudimentary and borrows ideas from several known approaches
 – K switches act as location managers (LM).
 – An endpoint is mapped into one LM based on a simple hash. Endpoint updates LM through Location Update.
 – At session setup time, source subscribes with LM of destination.
• Routing protocol is a flat link-state protocol among switches.
Anticipatory Routing

Source S

Internet

Access Point

Switch

Known locations

Predicted locations/times

A_k, A_{k+1}

A_k+2, A_{k+2}, t_{k+2}, A_{k+3}, A_{k+3}(t_{k+3}, t_{k+4})

A_k, (X_k)

A_{k+1}, (X_{k+1})

A_{k+2}, (X_{k+2})

A_{k+3}, (X_{k+3})

A_{k+4}, (X_{k+4})

LI(P_{k+2}, P_{k+3})

LM(D)

LI(P_{k+2}, P_{k+3})

LU(H_{k+3})

LU(H_{k+2})

LU(H_{k+1})

LU(H_k)

\(A_k \) = ID of k-th switch

\(t_k \) = affiliation time with \(A_k \)

\(X_k \) = \(A_k \)'s position

\(H_k = \{ A_k, X_k, t_k \} \)

\(P_k = \{ t_k, A_k, t_{k+1} \} \)

12/03/2004
Anticipatory Routing (cont’d)

• Location Manager (LM) uses three basic steps to determine future locations and affiliation times
 – *Estimation of the endpoint’s trajectory* as follows:
 L = 2
 1. LM picks L and (L+1) latest positions \((X_{k-L}, X_k) \) and \((X_{k-L}, X_k) \)
 2. For each set, LM derives two linear equations \((m_1, h_1) \) & \((m_2, h_2) \)
 3. From \((m_1, m_2) \), directions \((\theta_1, \theta_2) \) are determined
 4. If \(|\theta_1 - \theta_2| > \theta_{\text{thresh}}\) then endpoint has “turned” and \((m_1, h_1) \) becomes the trajectory equation. Otherwise, \(L=L+1 \); goto step 1, etc..
 – *Estimation of the endpoint’s direction* \(\theta \)
 • \(\theta \) is determined from slope \(m \), current position \(X_k \) and oldest history position \(X_{k-t} \)
 – *Estimation of future location, affiliation/departure time*
 • Future locations are derived from \((m, h) \), last known position \(X_k \) and network topology
 • Affiliation/departure times to/from switch regions are a function of inter-switch distance, estimated speed, switch diameter, etc..
• Upon data forwarding, switch-source selects final location based on delay estimate and set of anticipated locations and affiliation/departure times
Anticipatory Routing (cont’d)

• **Experimental Environment**
 - Simulator built from scratch using C++ to independently control performance between fidelity and running time.
 - Multihop wireless network generated by placing a set of S switches and E endpoints in an L x L square area.
 - S = 100; E=40; L=1km; switch radius = 80 meters
 - Switches are static
 - Free-space propagation with threshold cutoff.
 - Mobility model is an extended random walk model.
 - Area model is a “wraparound” model: no area boundary.
 - Queuing delay at each node is modeled: packet is delayed by a time roughly proportional to the congestion.
 - Traffic is stream-oriented
 - Packets within a session generated by bernouilli trials
 - Data rate = 200 kbps
 - This parameters reflect future trends, including an increased reliability on wireless relays to extend the reach.
Anticipatory Routing (cont’d)

- **Throughput (packet delivery ratio)**, **Anticipated Fraction** and **Delay** are metrics of interest

- **Analysis**
 - AR does worse than traditional routing (TR) for speeds < 30mph
 - AR throughput ~92% around 30mph
 - AR performs better than TR above 30mph (throughput > 50%)
 - Loss-tolerant applications can benefit from this
 - Both AR and TR give rise to higher delays with increasing speed
 - Control message latency increases with frequency of affiliations, resulting in higher queueing delays

12/03/2004
Conclusion

• Anticipatory Routing (AR) is a novel mechanism that addresses the problem of routing to highly mobile endpoints
 – AR improves throughput by 56% compared to traditional routing mechanisms in all cases studied
• In practice, AR might be applicable to
 – wireless broadband networks (e.g: wireless-MANs/“mesh extension”) with a large and dense mobile user base
 – tactical networks with truck-mounted routers where situation awareness update of video/imagery data is critical