A Lightweight Secure Cyber Foraging Infrastructure for Resource-Constrained Devices

> Sachin Goyal and John Carter School of Computing University of Utah

Today's Computing Environments

A GLOBAL INITIATIVE

Today's Computing Environments

- Small devices = resource - constrained
 - Limited compute power, memory, storage, battery
- Can we overcome these resource constraints?

A GLOBAL INITIATIVE

Cyber Foraging or Surrogate Computing

 Enhancing capability of devices with help from powerful computers in environment

Example: Speech Recognition

Local Speech Recognition

- Slow response (~minutes)
- High battery utilization

Example: Speech Recognition

Cyber-foraged

A Smart Home/Office Environment

This Talk's Focus

- Enable cyber foraging on trusted computers already owned by users
 - Lightweight but flexible infrastructure for clients
 - Surrogate design based on virtual machines
 - Security
 - Surrogate located across Internet (e.g., home PC)
- Speech recognition : 170x improvement in response time, 60x in energy consumption

Related Work

Spectra / Chroma from CMU

- Based on Coda
- Remote data storage + remote execution

Xenoservers from Cambridge

- A platform for wide area distributed computing e.g., utility computing, server on demand
- Uses virtual machines based on their Xen work

Our Cyber Foraging Infrastructure

Lightweight for client – no heavy middleware

- Surrogate: based on virtual machine (VM) technology
 - Isolation
 - Resource control
 - Flexibility
 - Easy cleanup

Our Cyber Foraging Infrastructure

Two flavors of virtual machines

- Xen (para-virtualized x86)
- Linux Vserver: based on encapsulation of processes in groups through a modified kernel

Client gets complete virtual server

- Root access
- Unique IP address
- Clean disk image of a distribution (e.g. redhat9)

Control Flow

Statistical Statistics of the statistic statistic statistics of the statistics of the

If yes, start a virtual server, and copy the key to /root/.ssh/authorized_keys file

Result: client can directly ssh to virtual server

Each Device has their own public-private key. Now all the devices are authorized to use the surrogate

User Certified Devices

Authorized List

ssh-rsa AAAAB3Nyc2E... ssh-rsa AAA33221y3D...

device public key
+ user public key
+ certificate

Surrogate

Surrogate verifies the certificate and checks if user public key exists in authorized list

Invoking client's task on virtual server

- Client sends script URL through ssh
- Virtual server manager downloads and executes the script
- Script downloads, installs, and runs required programs

Experimental Evaluation

- Zaurus SL-5500 PDA and Dell 2.4GHz P4 computer with 512 MB of RAM
- Two applications
 - Sphinx speech recognition from CMU
 - Synthetic data mining application
- Two networks:
 - University of Utah: surrogate on LAN, client connected using 802.11b (2-3 msec RTT)
 - Home on broadband Internet: client connected using 802.11b (72-73 msec RTT to surrogate)

Virtual Server Start and Application Install Experiments

Average response time for allocating and initializing a virtual server

Client location	Linux-Vserver	Xen
Univ	4.22s	12.43s
Home	4.41s	12.57s

Average response time for instantiating the *Sphinx* speech recognition engine

Client location	Linux-Vserver	Xen
Univ	.37s	.30s
Home	.78s	.74s

Sphinx Speech Recognition

 Recognition of pre-recorded utterance "Go Forward 10 meters" (44 KB)

Туре	Client location	Response time	CPU Util	Memory Util	App Size	Battery util
local	-	117.49s	>95%	51.6- 55.9%	23MB	1.1%
cyber foraged	University	0.59 -0.69s	0.3- 0.5%	1.1%	12KB	.018%
	Home	2.24 -2.31s				.083%
	50x				3 X	

- Local too slow for real time
- Cyber foraged: real time as well as low battery utilization (even from home)

[64 ...

Synthetic Data Mining Benchmark

- Download three 6.3 MB files, compute MD5 checksum
- Client and surrogate on same LAN

Туре	Response time	Battery	
Local	61.47s	1.5%	
Cyber foraged	2.9s (20x)	0.06% (25x)	

 More improvements possible using network card sleep modes

Conclusion

- Describe design and implementation of cyber-foraging system based on virtual machine technology
- Great potential to reduce response time and energy consumption
- Useful even for surrogate across the Internet

Future Work

- Security, trust, and economic models for using surrogates in untrusted environment
 - Presenting at WORLDS workshop this Sunday
- Service discovery better requirement matching, load balancing
- More applications
- Ease of use

