

Marcel Roşu, Michael Olsen, and Chandra Narayanaswami *IBM T.J. Watson Research Center* Lu Luo *Carnegie Mellon University*

••• Power-Aware Web Proxy Usage

••• Power Optimization for Wireless NIC

- Active power consumption in WLAN interface:
 - 5-10% in notebooks, 50-90% in PDAs
- Existing power-reduction approaches for WLAN clients:
 - 802.11 Power Saving Mode limited power saving during active transmissions
 - MAC level extending sleep time
 - Transport level energy efficient protocols
 - The unpredictability of incoming traffic causes waste of power
- Our approach Power Aware Web Proxy (PAWP), using:
 - A web proxy to shape HTTP traffic going into client's WNIC Based on:
 - Application domain knowledge
 - MAC level configuration
 - Network conditions

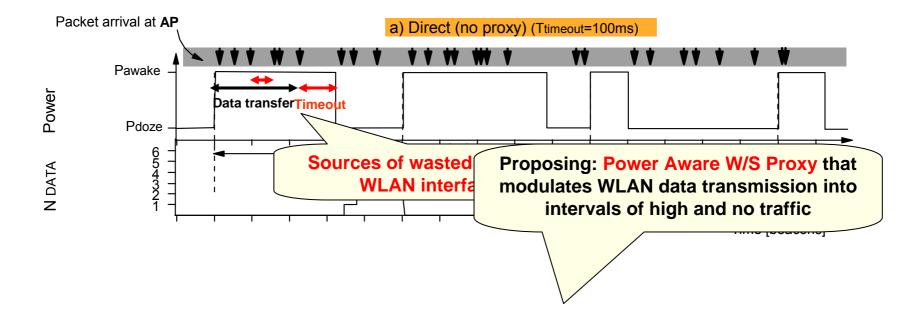
o 802.11 Power Management

- Interactions with Incoming WLAN Traffic
- o PAWP Architecture
 - Traffic Shaping Rules
- o Experiments
 - Testbed
 - Methodology
 - Results
- o Conclusions

••• 802.11 Power Management

o Power Modes

- Active
- Power Save

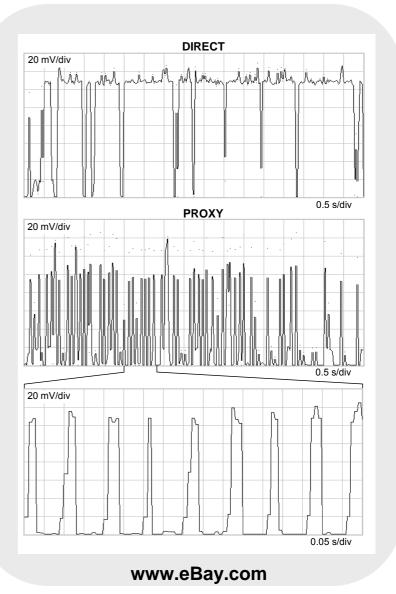

o Power States

- Awake (both Modes, always when listening to beacon from station)
 - PRISM3 PCMCIA card: 848mW
- **Doze** (Power Save Mode)
 - PRISM3 PCMCIA card: 25mW

o Transition between modes always initiated by station

- Frame exchange with access point
- Active -> Power Save after idle configurable period
- Power Save -> Active after sending/receiving frame

••• Analysis of Incoming WLAN Traffic



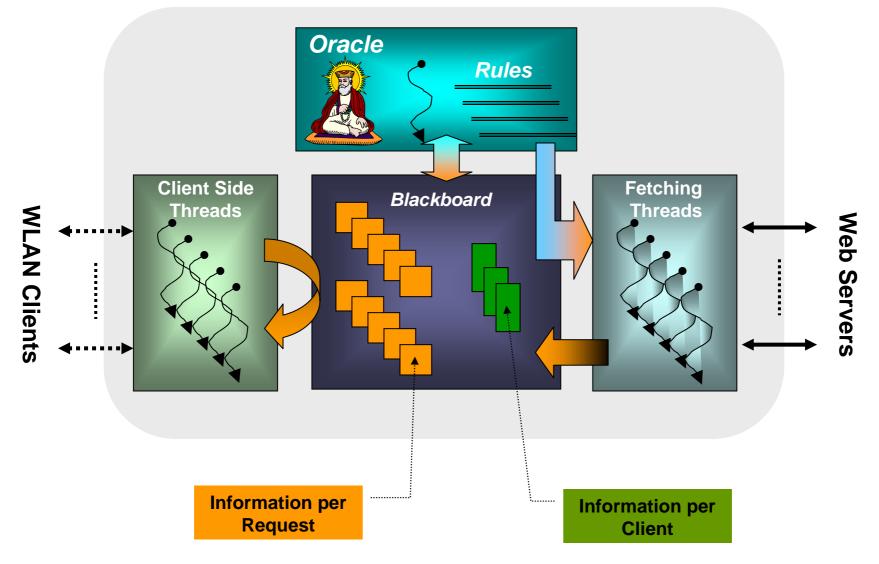
WMCSA 2004

••• Comparison on Power Consumption

DIRECT

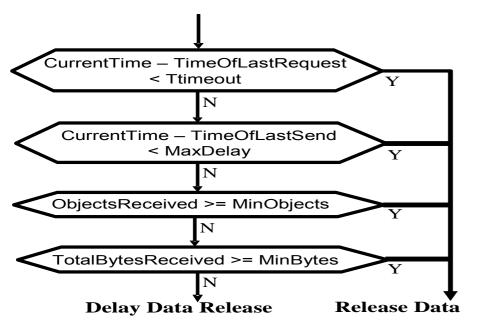
PROXY

ACPIspec.pdf


December 3, 2004

o 802.11 Power Management

- Interactions with Incoming WLAN Traffic
- o PAWP Architecture
 - Traffic Shaping Rules
- o Experiments
 - Testbed
 - Methodology
 - Results
- o Conclusions


••• Power-Aware Web Proxy Architecture

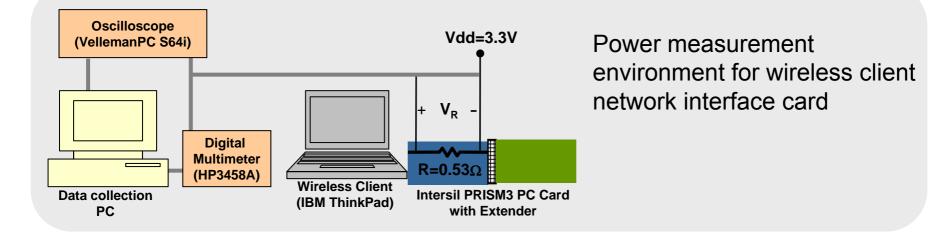
PAWP: Compensating Content Delays

Delaying Content Release

Compensating for Delays

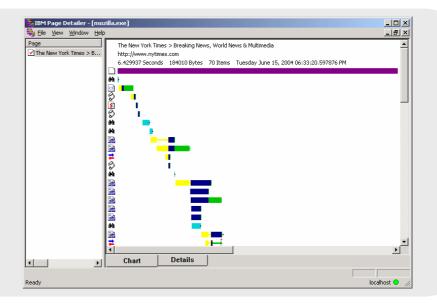
- Prefetch Embedded
 Objects
- o Pipeline Requests
- o Pipeline Responses
- o Prioritize Tasks
- o Major Challenge
 - Handling HTTP Cookies

o 802.11 Power Management

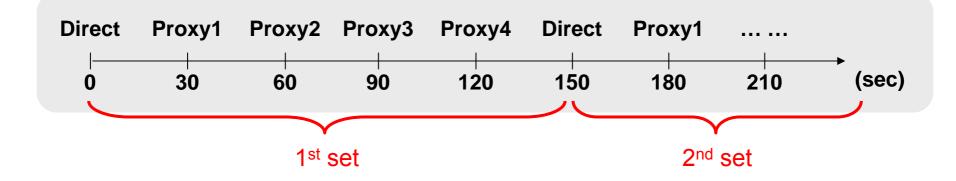

- Interactions with Incoming WLAN Traffic
- o PAWP Architecture
 - Traffic Shaping Rules

o Experiments

- Testbed
- Methodology
- Results


o Conclusions

Experimental Testbed

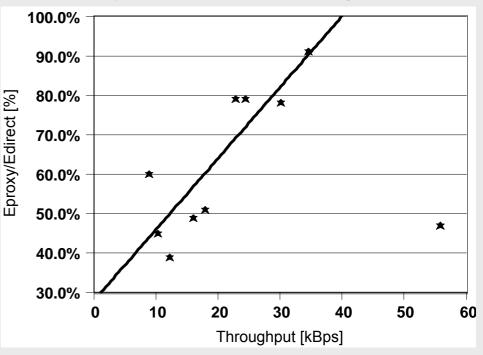

HTTP protocol trace collection using IBM PageDetailer

- Downloading time distribution
- Information on web objects
- HTTP headers

••• Complete, Across-The-Board Experiments

- o Based on the new experimental testbed
 - Experiments on each proxy configuration can be done in < 30 sec
 - Quick, automatic switching between configurations
 - Measurements in each set are close in time avoided deviation

••• Experimental Results (1)


Website Size [kB] / Num of Objects		Connection Type	Download Energy [J]	Download Time [s]	Throughp ut [kB/s]
Internet Explorer	cnn 281kB/84	Direct Proxy	2.47 2.25 (-9%)	8.13 7.33 (-10%)	34.6
	nytimes 253kB/76	Direct Proxy	2.36 1.89 (-22%)	8.17 5.78 (-29%)	30.1
	washingtonpost 535kB/73	Direct Proxy	6.14 2.83 (-54%)	9.08 8.58 (-6%)	56.0
	bbc 61kB/31	Direct Proxy	2.10 1.05 (-50%)	3.56 3.37 (-5%)	17.1
Mozilla	cnn 252kB/84	Direct Proxy	3.30 1.37 (-59%)	4.63 3.88 (-16%)	54.3
	nytimes 190kB/45	Direct Proxy	3.29 1.11 (-66%)	6.85 3.20 (-53%)	23.3
	washingtonpost 504kB/67	Direct Proxy	4.99 2.20 (-56%)	7.34 7.01 (-5%)	44.4

••• Experimental Results (2)

Cost and Benefits of Proxy Features

NY Times (<u>www.nytimes.com</u>) 240kB/77	Download Energy [s]	Download Time [s]
Direct (no proxy)	2.70	8.75
Proxy: all features disabled	2.46	8.95
Proxy: scheduling, prefetching	2.38	8.05
Proxy: scheduling, prefetching, request & response pipelining	2.15	7.54
Proxy: all features on	1.94	6.99

Relative energy consumption with Proxy vs. Direct case throughput

Conclusions

- o PAWP challenges
 - No client modifications
 - Visible to clients
 - Invisible to servers
 - Don't over-shape traffic
 - Avoid increasing download times
- o Lessons learned
 - Page design matters (cookies)
- o HTTP usage is increasing
 - PA<u>x</u>P extends savings beyond Web browsing

