
Celleration: Loss-Resilient Traffic Redundancy Elimination
for Cellular Data

Eyal Zohar
∗

Electrical Engineering
Technion

Haifa, Israel
eyalzo@tx.technion.ac.il

Israel Cidon
Electrical Engineering

Technion
Haifa, Israel

cidon@ee.technion.ac.il

Osnat (Ossi) Mokryn
†

Computer Science
Tel Aviv Academic College

Tel-Aviv, Israel
ossi@mta.ac.il

ABSTRACT
In this paper we present Celleration, a novel gateway-to-mobile
Traffic Redundancy Elimination (TRE) system, designed for the
new generation of data-intensive cellular networks.

Cellular TRE needs to account for the mobile device’s limited
battery power and the characteristics of the cellular network such
as users’ mobility, high packet-loss and long round-trip delays.

Celleration is based on a novel TRE technique, in which the cel-
lular gateway observes the forwarded chunks to identify the begin-
ning of a previously observed chunk chain, which in turn is used
as a reliable predictor to multiple future chunks. These predictions
establish an ad-hoc gateway-to-mobile TRE learning mechanism
that leverages the gateway’s history records and the user mobile
device’s cached content for an efficient TRE operation for both the
backhaul and the wireless last-mile.

We present a data analysis of captured cellular traffic from 130
cellular sites and a long-term study of a social network. Finally, we
analyze Celleration redundancy elimination and performance under
high packet loss.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms
Algorithms, Design, Measurement

1. INTRODUCTION
The vast proliferation of smartphones and cellular tablets has

brought a dramatic data traffic increase to cellular operators’ net-
works [6]. Although Cellular bandwidth demand is traditionally
associated with the last-mile air-interface, it is evident today that
backhaul traffic is taking a growing share of the network cost. Yan-
kee Group [13] estimates that the backhaul accounts for as much as
30% of a mobile operator’s operating costs, and predict that the mo-
bile network operators will face a massive investment in backhaul

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’12, February 28–29, 2012, San Diego, CA, USA.
Copyright 2012 ACM 978-1-4503-1207-3 ...$10.00.
∗Also with Hasso-Plattner-Institute Research School at Technion.
†Also with Technion - Israel Institute of Technology.

infrastructure. Emerging complementary solutions involve limit-
ing users’ data plans [1] and reducing traffic with various software
solutions [17, 10, 5].

In this paper, we leverage Traffic Redundancy Elimination (TRE)
to reduce the bandwidth consumption at both the backhaul and the
wireless last-mile. Traffic redundancy stems from common end-
users’ activities, such as repeatedly accessing, downloading, dis-
tributing and modifying identical or similar information items (doc-
uments, data, web and video). TRE eliminates the transmission of
redundant content. Hence, when an object is requested, the TRE
sender does not transmit the parts already residing on the receiver’s
side. The TRE receiver, correspondingly, reconstructs the object
using the newly transmitted parts as well as those already residing
on its side. This method enables network cost reduction and data
transfer speedup. Recent measurement studies have shown that the
mobile environment is beneficial for caching and TRE solutions
due to a highly predictable mobility pattern [18] and homogenous
behavior [9].

In common TRE solutions, prior to the transmission of the data
chunks, which are data parts parsed according to the data content,
both the sender and the receiver examine and compare the chunk
signatures. When redundant chunks are detected, the sender re-
places the transmission of each redundant chunk with its strong
signature [7, 15]. Most existing TRE systems are optimized for en-
terprise branches but are less efficient in a mobile environment, in
which the client is detached from a fixed location. These systems
are not designed to address high packet loss, unstable latency and
unpredictable user bandwidth associated with the cellular infras-
tructure.

We present a novel TRE solution tailored for cellular networks,
termed Celleration, which eliminates individual clients’ redundant
traffic across the cellular network. In this solution, a TRE gate-
way, located at the cellular network Internet entry-point, leverages
the aggregated information transmitted through the gateway to en-
able a smart delay-free TRE. Using locally gathered information,
the gateway detects similarities in repetitive chunk flows and per-
forms an out-of-band ad-hoc learning against the mobile devices
for possible elimination of future chunk transmissions. The gate-
way refrains from sending data which the ad-hoc learning mech-
anism finds to be residing at the receiver’s end, while other data
is forwarded with no delay. Thus, the gateway reduces the traffic
over the path to the mobile device and speeds up the overall perfor-
mance.

In contrast to existing server-based solutions, Celleration does
not require the gateway to cache data, continuously track the de-
vices storage state or to delay data for ad-hoc synchronization;
instead, the gateway records only the short chunk signatures and
learns their sequencing likelihood. The gateway then uses the ag-

gregated cross-user knowledge to predict individuals’ future data
and enable bandwidth savings for end-users.

We have conducted extensive data analysis and experiments that
motivate the novel design point of Celleration. First, in Section 3
we explore the individual end-user redundancy and show a high
redundancy ratio. More specifically, the data comprised from 130
cellular web sites and 17,000 users indicated 46% individual redun-
dancy. In addition, we investigate the effect of retaining long-term
memory in mobile devices on TRE performance and show that a
TRE with 3-days memory achieves about 48% bandwidth saving
compared to only 27% for existing short-term solutions [4][2]. We
then proceed to show that a TRE which supports changes in client
IP addresses enhances the bandwidth savings by 18%. Finally, in
Section 5 we show that Celleration achieves high redundancy elim-
ination even in the face of high packet-loss.

2. MOTIVATION AND RELATED WORK
In all TRE solutions, the sender needs to identify data parts which

are locally accessible at the receiver, and eliminate their transmis-
sion. To this end, most current TRE solutions employ one of the
following techniques:
1. Full synchronization - maintain full synchronization between the

sender and receivers so that the sender has a consistent view of
the receivers’ storage.

2. Preliminary negotiation - the sender, before forwarding the data,
checks with the receiver whether this data already resides at the
receiver.

3. Client prediction - the client, upon receiving known data, sends
the sender predictions for future data whose transmission is re-
dundant.
The full synchronization approach is common in commercial

TRE solutions [11, 14] that utilize proprietary middle-boxes placed
at both ends of the communication path. The major drawback of
the full synchronization technique in the mobile environment is
that it requires either a continuous connection between the gateway
and the mobile device or a massive state synchronization when a
new connection is established. The continuous synchronization of
both ends has also been adopted by several academic solutions [4,
2]. The above mentioned solutions require the server to maintain a
fully and reliably synchronized data cache for each client. To ad-
here with the server’s memory requirements, these caches are kept
small (around 10 MB per client), thus making the system inade-
quate for long-term redundancy.

The preliminary negotiation approach is suggested in the early
LBFS work [15] as well as in Wanax [7], which is a TRE system
tailored for the developing world where WAN bandwidth is scarce.
The major drawback of these solutions is the need of buffers and
the added transmission delay.

The client prediction approach, termed PACK [20], serves as the
departure point for Celleration. In PACK, according to currently
received data and the history of data reception, the client sends pre-
dictions to cloud servers concerning redundant data that is about
to be sent from the server. If the prediction is correct, the server
eliminates the transmission of the corresponding data. PACK is
designed to reduce cloud costs by offloading the TRE effort from
the cloud to unutilized desktop clients. When dealing with cellular
networks and sites, Celleration has several advantages over PACK’s
end-to-end scheme:
1. Client prediction requires more computational efforts on the client’s

side, while Celleration considers the limited power of cellular
devices by shifting the chunking and signing efforts to the net-
work operator’s equipment.

2. Cross-user knowledge aggregated at the gateway keeps Cellera-
tion updated with recent content changes and relations between
distinct objects. These help the gateway to predict future data
based on historical data and meta-data.
A recent study [12] further motivates the introduction of a novel

cellular solution. According to this research, end-to-end solutions
that require full synchronization are ineffective in lossy mobile cel-
lular networks. The loss recovery scheme offered by [12] improves
the full synchronization approach but cannot prevent the added la-
tency and some of the bandwidth waste due to lost packets.

3. DATA ANALYSIS
We present here a comprehensive analysis of traffic extracted

across 130 cellular web sites and a social network site in order to
evaluate the potential redundancy elimination in cellular networks.
In addition, we analyze five leading news sites to apprehend the
time behavior of content in frequently changed sites.

For redundancy computation we conservatively assume that each
client starts with an empty cache. The chunking mechanism [20]
uses an 8 bits anchor and minimal chunk size of 64 bytes, expecting
an average chunk size of around 320 bytes.

3.1 Analysis of Traffic in a Cellular Gateway
We obtained a continuous 5 hours traffic recording of a cellular

gateway in September 2011. The gateway connects 130 web sites
to the cellular networks. The recording contains over 1.2 million
HTTP sessions generated by 17,000 distinct cellular users. Each
record has a device-level unique identifier that enables a reliable
study of same-user activity. Overall, we found an average of 46%
same-user redundancy in these 5 hours. This result is a conserva-
tive estimate of the amount of redundancy in cellular web traffic,
because our calculation totally ignores chunks that already reside
at the client’s storage when the recording starts.

3.1.1 Redundancy by Content and Site Type
Traffic redundancy is caused by either repeating identical ob-

jects or self-similarity within content. Repeating objects are usually
compressed multimedia like pictures, graphics, audio and video.
Self-similarity usually appears in variations of textual content like
HTMLs and documents.

Table 1 shows the redundancy according to file type. In addition,
the table presents the average cross-user repeats per object, which
does not directly save bandwidth but is related to the gateway pre-
diction mechanism. GIFs are commonly used for graphic objects,
such as logos, decorations and advertisements. JPEGs are com-
monly used for photography, so their size is larger and more vari-
able than GIFs. Furthermore, many GIFs (about 10%) are shared
between different sites. In addition, in most sites we found that
HTML content was dynamic in time as further demonstrated in
Section 3.3.

Table 2 shows that the redundancy varies from one site type to
another. News sites have the lowest same-user redundancy, mainly
due to changes in content over time and to non-repeating usage
pattern. On the other hand, entertainment sites are relatively static

Table 1: Cellular sites dataset results: redundancy level by content

Content type Variations Same-user
redun.

Cross-user down-
loads per object

GIF None 72% 10 : 1
JPEG None 33% 3.8 : 1
HTML By device, time,

personal, etc.
40% 2.1 : 1

Table 2: Cellular sites dataset results: self-redundancy by site type

Site type Same-user redun.
News 38.7 %
Services 43.1 %
Shopping 45.5 %
Social network 51.5 %
Entertainment 61.0 %
Finance 63.0 %

and attract users to view the same item multiple times. Finance
sites and social networks are very dynamic in nature, but the fresh
content is repeatedly wrapped with similar content and graphics,
which generates relatively high same-user redundancy.

3.1.2 Variety of Devices
Compared to the traditional web, cellular sites have to deal with

many different browsers and displays. We found 1,262 different
combinations of devices, operating systems, browsers, and sup-
ported technologies. These parameters have a major effect on such
features of a site’s presentation and usability as screen resolution,
orientation, colors, and interaction methods.

Due to this variety, many cellular sites generate device-adapted
content according to each site’s technological maturity and busi-
ness logic. This observation explains why traditional object-level
cross-user HTTP proxies are inefficient in the cellular era; even
if URLs were static, a proxy would not be able to tell in advance
if the object being requested by a user were identical to another
object previously downloaded by a different user with exactly the
same URL.

3.1.3 Compression
We found that only 48% of the observed clients support object-

compression, probably due to the limited computational power of
mobile devices and/or the immaturity of mobile web browsers de-
velopment. This stresses the importance of cellular server-side
TRE as a means of reducing textual traffic. This traffic, mostly gen-
erated by HTMLs and documents, is commonly compressed today
with gzip by all major non-cellular web browsers and web sites.

3.2 Social Network Dataset
We obtained the access log of a social network site for a period

of 33 days at the end of 2010. The dataset enables a reliable track-
ing of returning users despite changes in the IP addresses, as all
users identify themselves using a unique login ID to enter the site.
This helps to measure the effect of long-term chunk caching on
the TRE efficiency. It also enables the tracking of the device type
and network operator by using the user-agent field and the client IP
address.

Our first step is to measure the amount of per-user traffic redun-
dancy by using the measurement scheme presented in [19]. Then,
we analyze our findings and show why existing TRE schemes can-
not efficiently eliminate this potential redundancy due to the cellu-
lar network circumstances. In addition, the fact that this site equally
serves non-cellular users helps us to learn more about the differ-
ences between the two audiences.

3.2.1 Redundancy and Usage Patterns
In order to evaluate the redundancy elimination potential of dif-

ferent TRE schemes, we analyzed the usage patterns and content-
similarity of all the social network dataset users and compared the
results according to the device and network type.

Table 3 presents the results divided into four categories: PC (in-
cludes laptop) users over either a cellular or non-cellular network,

Table 3: Social network dataset results: usage patterns and redundancy
elimination potential of 3 different TRE schemes

Cellular Non-Cellular
PC Non-PC PC Non-PC

Page views per session 51.6 35.7 51.7 38.0
Multiple end-devices 4.4 % 11.8 %
End-devices per user (avg.) 1.18 1.49
Sessions per user (avg.) 7.56 10.36
Intra-session redun. 33.4 % 32.3 %
Inter-session, intra-IP redun. 52.0 % 50.4 %
Inter-session, inter-IP redun. 67.7 % 64.4 %

and non-PC devices over either a cellular or non-cellular network.
The measured redundancy is the percentage of chunks that were re-
peatedly transmitted to the client. We simulated three TRE schemes
that differ in their ability to detect returning users. We found that
in all schemes, cellular users had higher traffic redundancy, proba-
bly because cellular users are more likely to embrace a single end-
device (e.g. personal smartphone) than non-cellular users. We also
measured the number of page views per site-level session (from
first page view to last) and found that it was lower for cellular users,
possibly because of the limited user interface.

Note that while we found a clear case for TRE style caching,
object level caching is inappropriate in this case due to the use of
dynamic URLs. This social network, like many other modern sites,
deliberately prohibits object caching to protect business interests
such as privacy, content copyrights, etc.

3.2.2 Long-Term Caching
To assess the bandwidth saving potential of long-term caching,

we measured the social network redundancy while changing cache
sizes at the client-side. We set different cache sizes by changing
the maximal age of data kept in the client’s storage.

Figure 1 illustrates the redundancy level as a function of cache
sizes. The upper line represents the redundancy for TRE schemes
that identify returning clients despite changes of their IP addresses.
The lower line is the upper bound for TRE schemes that do not
track returning clients that change their IP addresses (e.g., [4][2]).
Clearly, the larger the client’s cache is, the larger is the amount of
traffic that can be eliminated.

Further analysis shows that most users do not have multiple ses-
sions within a single hour. In addition, the average redundancy
within a single session (intra-session) is about 33% compared to an
inter-session maximal daily redundancy of 77%. This means that
a major part of the redundant data is found across sessions; hence,
the cache needs to store multiple sessions over many hours. These
findings showing that a TRE with one-hour cache saves at most
28% of the bandwidth match the results presented in Figure 1.

50%

60%

D
ay

40%

50%

th
e

4t
h

D

30%

an
cy

 o
n

t

20%

R
ed

un
da

IP switch immune

0%

10%

D
ai

ly
 IP-switch immune

IP-switch vulnerable

0%
0 6 12 18 24 30 36 42 48 54 60 66 72

Cache Size - Number of Hours Objects are Kept in Cache

Figure 1: Social network, site traffic redundancy on the 4th day with dif-
ferent cache sizes

3.2.3 IP address changes
Several TRE schemes assume that the sender can identify the

receiver by the packet level IP address. We found that cellular IP
addresses are very dynamic. In particular, in the social network
dataset examined, 67.1% of the cellular sessions used an IP ad-
dress that was previously used by another user or device. This phe-
nomenon was not observed in non-cellular networks, where only
2.2% of the IP addresses were reused. In addition, the social net-
work login information revealed that in around 95% of successive
connections of non-cellular users the same IP was used.

We also found that 62.1% of the devices that connected via a
cellular network also connected via a non-cellular network. Some
of these devices oscillated between cellular and non-cellular net-
works. Consequently, we conclude that an efficient TRE for cel-
lular networks should not use IP addresses as the sole end-point
identification.

3.3 News Sites
News sites are an interesting challenge for TRE mechanisms,

as they present frequently changing content. We examined the
data obtained from five leading news sites over a 24 hour period.
The main page of each site was downloaded repeatedly 10 min-
utes apart. This of course does not represent a typical single user’s
surfing pattern. Nevertheless, we present a deeper inspection of the
data in order to better understand the nature of incremental changes
occurring between consecutive downloads.

Table 4 presents the analysis results of the news sites dataset. We
found that more than 88% of the traffic generated from these sites
over the 24 hour period is redundant.

Minor data changes were observed on each download while ma-
jor changes occurred on average every couple of hours, with up to
22% new data. A common minor change is related to time strings
or random tokens that appeared in the HTTP header, HTML or a
script. Certain sites also rapidly changed the embedded advertise-
ments.

4. CELLERATION
Following our findings in Section 3, we conclude that cellular

networks require a TRE solution which can use the long-term data
residing in the mobile device. At the same time, it should endure
the latency which is added by several existing solutions.

In this section, we describe Celleration, which is a cellular TRE
service that complies with our findings. Unlike previous solutions,
Celleration is loss-resilient, i.e., it does not mistake TCP retrans-
missions of lost data with transmissions of redundant data which is
already cached in the mobile device storage.

Figure 2 demonstrates the settings of the system. The TRE is
performed between the packet data network gateway (gateway) and
the mobile device. Celleration enables the gateway to predict future
data to be sent, and eliminate its transmission in case it already
resides in the mobile device’s storage. Consequently, Celleration
never delays traffic and does not utilize data buffering.

4.1 On-the-Fly Prediction
The gateway forwards all crossing data to the mobile device un-

less it has previously confirmed that the data already resides in the
device. The gateway activates three mechanisms:

Table 4: News sites dataset results

BBC CNN Yahoo WPost NYTimes
Total redun. 95.5 % 93.8 % 88.0 % 96.5 % 89.4 %
Avg. file size 93 KB 82 KB 124 KB 224 KB 188 KB

system‐basic‐components

BackhaulBackhaul The
Internet

Base-station
Gateway

Mobile-
device

Internet

TRE

Figure 2: Celleration’s basic components

1. Flow coding: The gateway continuously chunks the crossing
flows using the algorithm of [20] and signs each chunk using
SHA-1. It stores the chunks’ signature sequences in its local
cross-user signature store. In addition, each chunk’s size and
signature are sent as meta-data to the mobile device to spare the
client the effort of chunking and signing as illustrated in Fig-
ure 3a.

2. Ad-hoc learning of mobile devices: When the gateway recog-
nizes the crossing flow by the data’s signatures, it looks up the
cross-user signature sequences store for potential future data and
inquires whether the mobile device has this potential data in its
storage as illustrated in Figure 3b. We leave the details of the
cross-user signature sequences store to future work because of
page budget limitations.

3. Flow reduction: If the ad-hoc learning indicates that some data
already resides in the mobile device, the gateway refrains from
forwarding that data to the device when it arrives, thus reducing
the transmission over the path to the mobile device as illustrated
in Figure 3c.
Note that the gateway always forwards data that the mobile de-

vice has not yet acknowledged, keeping the operation delay-free.

4.2 Ad-Hoc Learning
The on-going ad-hoc learning between the gateway and the mo-

bile device is activated upon need during the connection time. This
gateway-initiated process, illustrated in Figure 3c, takes place as
follows:
1. The gateway sends a list of signatures, each made of (serial,

hash, size)
2. The mobile device returns a list of time-limited approvals (serial,

time)
3. The gateway refrain from forwarding approved chunks, and sends

control data instead (serial, TCP sequence)
The predictions are based on the most likely patterns derived

from previous flows of all users. This scheme also enables the mo-
bile device to derive the predicted chunks from alternative sources,
such as sibling peers or a regional cache server.

The above described ad-hoc learning tightens the gateway and
the device synchronization with time. This process adds only a
small traffic overhead without requiring a permanent connection
between the gateway and the device. This approach frees the gate-
way from delaying transmissions, which may be harmful for the
TCP retransmission mechanism.

alg‐outline‐a‐flow‐coding

1 d t t1. data + meta

2. data ack

(a) Flow coding

alg‐outline‐b‐adhoc‐learning

1 d t t d1. data + meta + pred

2. data ack

(b) Ad-hoc learning

alg‐outline‐c‐flow‐reduction

1 d t t d1. data + meta + pred

2. data ack + pred ack

3. reduced

(c) Flow reduction

Figure 3: Celleration: operation outline

4.3 Flow Reduction
The above described basic flow reduction algorithm is illustrated

in Figure 4a. In the more advanced mode termed the speculative re-
duction, the gateway may also send predictions when it is not sure
if the crossing data chunks are stored in the mobile device. The
speculative algorithm estimates the probability of these chunks be-
ing stored in the mobile device. This prediction is based on various
parameters, among which there are the success history of the spe-
cific mobile device and chunk availability in other mobile devices.
This speculative reduction is illustrated in Figure 4b.

5. EVALUATION
In this section, we evaluate Celleration paying special attention

to the characteristics of the cellular network.

5.1 Implementation Details
Our implementation is application transparent at both the sender

and the receiver. The receiver-sender TRE protocol is embedded
in the TCP Options field for low overhead, similar to the published
source code of [20].

The implementation maintains a basic signature store in the gate-
way by keeping for any chunk signature the last observed subse-
quent chunk signature in a LRU fashion. A future extension to this
basic implementation is a more advanced prediction mechanism
that would take into consideration potentially valuable parameters
such as the content’s origin server, time of day, etc.

The chunking mechanism uses an 8 bits anchor and minimal
chunk size of 64 bytes, resulting in an average chunk size of around
320 bytes. We found this size to achieve high TRE level, adding an
overhead of less than 3% per chunk prediction. Each prediction car-
ries the lower 32 bits of the SHA-1 signature, the chunk length (12
bits), and a serial (8 bits). It should be noted that the lower 32 bits of
the hash are sufficient for collision avoidance, because a collision
might occur only if the following hold: (1) the gateway predicts
chunk A. (2) the device has in its limited storage chunk B 6= A.
(3) lsb32(sha1(A)) = lsb32(sha1(B)). (4) len(A) = len(B).

5.2 Setup
Our simulation runs on Linux with Netfilter Queue [16]. At the

gateway, we used an Intel Core 2 Duo 3 GHz, 2 GB of RAM and a
WD1600AAJS SATA drive desktop. The client’s side was a HTC
Desire smartphone running Android 2.2.1. Since currently Android
does not support Netfilter Queue, we ran the TRE client side on a
laptop and connected the smartphone to the gateway through the
laptop’s WiFi.

5.3 Dealing with High Latency
The problem with the high latency in today’s cellular networks is

a Bandwidth Delay Product (BDP) that is much larger than the ini-
tial TCP window sizes [8]. More specifically, with RTT of 200mSec
and data rate of 2Mbps the BDP is 50KB, while a typical Android

alg‐bs‐compress

receive

idle

receive
chunk

in mobile?

noo

send
sign. to

yes

mobile

Send
chunk to
mobile

(a) Basic mode

alg‐bs‐speculate

receive

idle

receive
chunk

in mobile? no

send
sign. to

yes speculate?

noyes
mobile

Send
chunk to
mobile

(b) Speculative mode

Figure 4: Algorithm: gateway flow reduction

initial receiver window is below 6KB and many servers use an ini-
tial congestion window that follows the 4*MSS rule [3]. Under
these circumstances, Celleration gateway may forward some of the
redundant data before the mobile device’s prediction acknowledge-
ments reach the gateway. This forward operation keeps the opera-
tion delay-free but may decrease the TRE efficiency.

To measure the effect of the latency on Celleration, we simulated
a symmetric long latency path of 200mSec RTT by delaying pack-
ets between the gateway and the mobile. Looking at the collected
cellular traces, we found this RTT to represent today’s networks, al-
though we explored modern HSDPA traces that reach RTT as low
as 70mSec. To this end, we evaluate Celleration with some of the
data of Section 3.3.

Figure 5 presents 144 downloads from CNN’s main page, down-
loaded repeatedly by a mobile device each 10 minutes over 24
hours. This workload may not represent a typical single user’s surf-
ing pattern, but it provides a controllable environment is which we
demonstrate how the algorithm deals with high latency and fre-
quent data changes. Each download was encoded in the gateway
to about 220 chunks and compared with signatures of former data
that flew through the gateway. Each vertical line in the graph rep-
resents a single download, where the graph’s dots represent chunks
that were completely new to the mobile device at the time of the
download. The blank areas represent chunks that already were in
the device’s storage when the new page was downloaded, which
was about 92% of each download’s chunks on the average.

In this experiment, Celleration was able to eliminate 97% of the
chunks that the mobile device already had. The other 3% were not
eliminated but forwarded to the mobile device with no delay. We
have analyzed the results and found two reasons for that:
• Latency - The first packets in each TCP session help the gateway

to predict future data and are forwarded with no delay. Seem-
ingly, the number of such forwarded packets may increase when
the BDP increases. In practice, we have found that this number
is bounded by TCP window sizes on both sides; the sender win-
dow and the initial receiver window. In this experiment, it was
Android’s 6KB initial receiver window that bounded the imme-
diate forwards hit-ratio depression to less than 3%.

• False predictions - Another source for redundancy that was not
eliminated was the presence of chunks that fluctuated between
different versions of the page. We found that in each download,
up to 12 existing chunks (average 2.5) were not a part of the pre-
vious download but had been recently seen in an older version
of the page up to 60 minutes before. These findings indicate

0

20

40

60

80

100

120

140

160

180

200

220

0 200 400 600 800 1,000

C
hu

nk
 in

de
x

Time since first interval (minutes)

Figure 5: Visual presentation of new data in CNN’s main page, down-
loaded repeatedly 10 minutes apart for 24 hours

90%

100%
m

al

70%

80%

to
 M

ax
im

50%

60%

R
el

at
iv

e
t

si
bl

e
R

E

30%

40%

ce
nt

ag
e

R
Po

ss

10%

20%

R
E

Pe
rc [12]

Celleration

0%
0% 2% 4% 6% 8% 10% 12%

Measured Packet Loss RatioMeasured Packet Loss Ratio

Figure 6: Redundancy elimination between the gateway and a smartphone,
when the cellular network losses packets

that in some cases it may be beneficial to use signatures of fre-
quent older versions, instead of the simple LRU mechanism we
implemented.

5.4 Under High Packet Loss
To simulate a lossy network, packets were randomly dropped

at the gateway. To evaluate Celleration, we compared it to [12]
which enhances previous TRE solution to cope with packet loss.
The enhanced scheme detects potentially lost packets and prevents
the sender from eliminating their retransmission.

Celleration has an inherent packet-loss resilience mechanism due
to the interactive ad-hoc learning mechanism. Chunks that do not
reside already at the receiving end, are not acknowledged by the
receiver, and therefore are not eliminated.

Figure 6 presents the redundancy eliminated by Celleration, com-
pared to [12] given a lossy network with up to 11% packet loss.
Celleration eliminates more than 80% of the redundancy at a 10%
packet loss rate, while [12] achieves only around 60% elimination.

5.5 Battery Power
Celleration takes into account the limited power of cellular de-

vices by shifting the chunking and signing efforts to the network
operator’s gateway. To justify this approach, we compared Celler-
ation’s power consumption with PACK [20]. To isolate the energy
consumption of PACK’s TRE operations, we turned off all commu-
nications in the smartphone and ran an application written for this
mission. The application performs only the additional operations
in which PACK client differs from Celleration client: it chunks a
(random) data buffer and signs each chunk using SHA-1. We ran
the application at an adjusted processing speed of 1.5 Mbps for 5
hours, in which the battery level decreased from 80% to 43%. By
comparing these results to an idle phone, we concluded that in this
scenario Celleration could save 30% of the battery power drain. It
should be noted that we did not account for other TRE operations
at the mobile device, such as storing and fetching chunks, as they
are mandatory and common for all TRE solutions.

6. SUMMARY
In this work we have presented Celleration, a TRE designed for

cellular networks. Celleration is tailored around the characteristics
of the cellular network, devices and usage patterns to achieve a loss-
resilient delay-free efficient operation. It eliminates a considerable
amount of bandwidth at both the backhaul and the wireless last-
mile of the network while preserving handset battery power.

In future work, we plan to explore efficiency and scalability is-
sues related to the gateway’s prediction mechanism.

7. REFERENCES
[1] Unlimited Data Plan: Is It Coming to an End? International

Data Corporation (IDC), October 2010. http://www.idc.
com/getdoc.jsp?containerId=AP3053409S .

[2] B. Aggarwal, A. Akella, A. Anand, A. Balachandran,
P. Chitnis, C. Muthukrishnan, R. Ramjee, and G. Varghese.
EndRE: An End-System Redundancy Elimination Service
for Enterprises. In Proc. of NSDI, 2010.

[3] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s
Initial Window. RFC 3390, 2002.

[4] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker.
Packet caches on routers: The implications of universal
redundant traffic elimination. In Proc. of SIGCOMM, 2008.

[5] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting Mobile 3G Using WiFi. In Proc. of MobiSys,
2010.

[6] S. Higginbotham. The Mobile Tsunami Is Near: Blame
Netflix and Apple. GigaOM, January 2011.

[7] S. Ihm, K. Park, and V. Pai. Wide-area Network Acceleration
for the Developing World. In Proc. of USENIX ATC, 2010.

[8] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and
F. Khafizov. Tcp Over Second (2.5G) and Third (3G)
Generation Wireless Networks. RFC 3481 (BCP 71), 2003.

[9] R. Keralapura, A. Nucci, Z.-L. Zhang, and L. Gao. Profiling
Users in a 3G Network Using Hourglass Co-Clustering. In
Proc. of MobiCom, 2010.

[10] L. Le and E. Hossain. Multihop Cellular Networks: Potential
Gains, Research Challenges, and a Resource Allocation
Framework. Communications Magazine, IEEE, 2007.

[11] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul. Method and
Apparatus for Reducing Network Traffic over Low
Bandwidth Links. US Patent 7636767, November 2009.
Filed: November 2005.

[12] C. Lumezanu, K. Guo, N. Spring, and B. Bhattacharjee. The
Effect of Packet Loss on Redundancy Elimination in Cellular
Wireless Networks. In Proc. of IMC, 2010.

[13] J. M. Pigg. Mobile backhaul evolution. Yankee Group
Webinar, April 2010.

[14] S. Mccanne and M. Demmer. Content-Based Segmentation
Scheme for Data Compression in Storage and Transmission
Including Hierarchical Segment Representation. US Patent
6828925, December 2004. Filed: December 2003.

[15] A. Muthitacharoen, B. Chen, and D. Mazi‘eres. A
Low-Bandwidth Network File System. In Proc. of SOSP,
pages 174–187, New York, NY, USA, 2001. ACM.

[16] netfilter/iptables project. libnetfilter_queue, October 2005.
http://www.netfilter.org .

[17] R. Pabst, B. Walke, D. Schultz, P. Herhold,
H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott,
W. Zirwas, M. Dohler, et al. Relay-Based Deployment
Concepts for Wireless and Mobile Broadband Radio.
Communications Magazine, IEEE, 2004.

[18] E. Rosensweig, J. Kurose, and D. Towsley. Understanding
Traffic Dynamics in Cellular Data Networks. In Proc. of
INFOCOM, 2011.

[19] N. T. Spring and D. Wetherall. A Protocol-Independent
Technique for Eliminating Redundant Network Traffic. In
Proc. of SIGCOMM, 2000.

[20] E. Zohar, I. Cidon, and O. Mokryn. The Power of Prediction:
Cloud Bandwidth and Cost Reduction. In Proc. of
SIGCOMM, 2011.

