EyeGuardian: A Framework of Eye Tracking and Blink
Detection for Mobile Device Users

Seongwon Han, Sungwon Yang, Jihyoung Kim and Mario Gerla
Dept. of Computer Science, UCLA
Los Angeles, CA, USA
{swhan, swyang, jhkim, gerla}@cs.ucla.edu

ABSTRACT

Computer Vision Syndrome (CVS) is a common problem
in the “Information Age”, and it is becoming more serious
as mobile devices (e.g. smartphones and tablet PCs) with
small, low-resolution screens are outnumbering the home
computers. The simplest way to avoid CVS is to blink fre-
quently. However, most people do not realize that they blink
less and some do not blink at all in front of the screen. In
this paper, we present a mobile application that keeps track
of the reader’s blink rate and prods the user to blink if an ex-
ceptionally low blink rate is detected. The proposed eye de-
tection and tracking algorithm is designed for mobile devices
and can keep track of the eyes in spite of camera motion.
The main idea is to predict the eye position in the cam-
era frame using the feedback from the built-in accelerom-
eter. The eye tracking system was built on a commercial
Tablet PC. The experimental results consistently show that
the scheme can withstand very aggressive mobility scenar-
ios.

1. INTRODUCTION

“The information age has taken a toll on our eyesight”
says Jeffrey Anshel, an optometrist in Carlsbad, California,
and president of Corporate Vision Consulting, which advises
employers on vision issues [1]. According to the American
Optometric Association (AOA), 90% of employees who use
computers at least three hours a day experience vision prob-
lems.

Normal vision requires a moist ocular surface, and blink-
ing is essential for this reason [14]. However, reading in-
formation on a computer screen often increases burden on
the human eyes. To adapt to this screen-saturated view-
ing situation, people tend to blink less than usual. Tears
covering the eyes evaporate more rapidly during long non-
blinking phases, resulting in dry eyes. The smaller size and
lower resolution the display, the more burden on the eyes.
Computer Vision Syndrome (CVS) is a set of eye and vision
related problems that results from prolonged use of comput-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotMobile’12 February 28-29, 2012, San Diego, CA, USA.

Copyright 2012 ACM 978-1-4503-1207-3 ...$10.00.

ers. Staring at a computer screen, smartphone, or tablet PC
leads to a significant reduction of spontaneous eye blink rate
due to the high visual demand of the screen and mental con-
centration on computer work [16]. The symptoms of CVS
include eye irritation, such as dry eye; red, itchy, and watery
eyes; fatigue, including heaviness of the eyelids or forehead;
and difficulty in focusing the eyes. Other symptoms of CVS
are headaches, neck aches, backaches and muscle spasms.

Mobile devices such as smartphones or tablet PCs have al-
ready become ubiquitous. Recently, it has been increasingly
common for people to check e-mail, browse on the Internet,
watch movies, and even read books on their portable de-
vices. People are indeed exposed to the CVS not only in
the office but also elsewhere. To protect people who spend
much time on mobile devices from this problem, we propose
a non-intrusive application that keeps track of the eye blink
rate of the mobile device users. If the blink rate is less than
desired, the application nudges the user to blink often by
vibrating, or modulating the brightness of the screen. To
the best of our knowledge, this is the first study that tries
to alleviate the CVS in a mobile computing environment.
To achieve this goal, a light-weight yet accurate eye detect-
ing and tracking technique specialized for mobile devices is
essential.

Eye tracking and blink detection algorithms using a gen-
eral video camera have been extensively studied in the lit-
erature. However, most of them assumed that the user is
always gazing at the screen, and the eyes of the user are
always in the video camera frames. The existing techniques
are inadequate for a mobile device since frequent changes in
device position due to the user movements lead to frequent
absence or position changes of the eyes in the video frame.

EyeGuardian is a simple yet effective technique using a
built-in 3-axis accelerometer to help efficiently track the
user’s eyes in mobile environment. The eye location is pre-
dictable in the continuous video images by fusing the ac-
celerometer and orientation readings from the device. By
eliminating unnecessary region where the eyes rarely exist
in the images, we achieve a real-time eye tracking and blink
detection on the mobile device even under a dynamic en-
vironment. We have implemented the proposed algorithm
on a Tablet PC and evaluated its performance. Extensive
real experiments in various usage scenarios confirm that our
technique is adequate for detecting and tracking eyes in the
mobile environment.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes previous studies on eye tracking and blink
detection. The proposed technique that predicts the eye po-

sition is introduced in Section 3 and is evaluated in Sec-
tion 4. Finally, the paper’s conclusions are summarized in
Section 5.

2. RELATED WORK

This section briefly reviews previous work on human eye
blink detection and its applications. Eye tracking and blink
detection using a video camera has been extensively stud-
ied in the literature, particularly in the filed of Human-
Computer Interaction (HCI). The main goal was providing
an effective way to use computer systems for those who have
disabilities or limited motor skills. A thorough survey on ini-
tial work on eye tracking and blink detection methods is well
summarized in [9,11]. Based on the detection and the track-
ing algorithms, applications for general desktop computers
and mobile devices have been presented.

Magee et al. presented EyeKeys [11], a gaze detection sys-
tem that runs on a general computer with video input from
an inexpensive USB camera while previously proposed sys-
tems required specialized hardware such as electrodes placed
on the face, an infrared illuminator, or an expensive frame
grabber.

Batista [4] presented a framework for drowsiness and point
of attention monitoring system. The proposed solution fo-
cused on detection of head rotation and eye blinks, which
were the two important cues for determining driver visual
attention, to measure the driver’s vigilance level. For the
feasibility evaluation of applications that detects the drowsi-
ness of drivers, Friedrichs et al. compared the performance
of algorithms that detect eye blinks from video images with
techniques using Electrooculogram (EOG) that can monitor
electrical muscles activities around eyes, thus it can be used
as a ground truth [13].

Miluzzo et al. developed a smartphone application, called
Eyephone [12], which was capable of tracking a user’s eye
and mapping its position on the smartphone display using
the phone’s front-facing camera. EyePhone enables the user
to activate smartphone applications by “blinking at the app”,
emulating a mouse click.

3. APPLICATION DESIGN

In this section, we review existing eye detection algorithms
and explain why they are inadequate for measuring the eye
blink rate on a tablet PC. We then propose a technique that
efficiently detects and tracks eyes via built-in accelerometer
readings.

3.1 Static vs Dynamic Environment

Previously proposed eye detection applications using a
general video camera assumed static usage environment where
the camera is fixed and the user is rarely out of center of the
camera frame. Moreover, they were developed as a form of
HCI, therefore, they did not account for the situation when
the user’s eyes are off the camera. Under this use case, for
efficiency, most of the implementations have tried to detect
the user’s face first because it is a much easier problem than
detecting the eyes. Once the face is detected, then, the re-
gion where the two eyes are expected is defined in order to
reduce the processing overhead. We call this first phase as
the “Detection Phase”. After the eye is detected in the pre-
viously defined region, another region based on the detected
eye location is defined for efficient eye tracking. The new

Time Complexity of Eye Detection
500

400

msec)

~ 300

Elapsed Time
N
o
o

100

0 20 80 100

40 60
Region Size (%)

Figure 1: Processing time for eye detection using
Haar Cascade Classifiers

region, called “Search Region”, is bigger than the detected
eye region but much smaller than the entire frame, and from
this moment on, the Search Region is regarded as the new
image frame. This frame size reduction leads to a speed
boost because it searches the eye only inside of small region
instead of searching in the entire image frame. We call this
the “Tracking Phase”.

This two-phase approach works well in the static environ-
ment. However, mobile devices are used in “mobile envi-
ronment” where both the user and the device are moving
continuously, leading to the following two problems. Firstly,
the user’s face and both eyes cannot be guaranteed to be
included in the entire camera frame at the same time. Sec-
ondly, in dynamic environment, the eye location in the next
frame cannot be guaranteed to be found in the expected
Search Region of the current frame. When this happens,
the existing algorithms search for eyes in the entire image
frame again. This leads to many misses of blink detection
due to the severe processing delay to detect the eyes. Since
the user does not intentionally try to be included in the
camera frame while non-camera applications are used, the
two problems indeed matter. For this reason, the two-phase
technique cannot be directly applied to our case.

3.2 Region of Interest (ROI) Prediction

Due to the first aforementioned problem, we remove the
face detection step. Our application only searches eyes in the
camera frame. In addition, the probability that the Track-
ing Phase fails to locate the eye position is higher in the
mobile environment. Thus, the increased processing time
becomes the primary problem in our application. There-
fore, a technique that can reduce the size of the region in
which we search for the eyes is necessary. Figure 1 shows the
processing time for eye detection using Haar Cascade Clas-
sifiers method [7,10] with QVGA (320X240) resolution in
respect of the frame size. The processing time for eye detec-
tion is solely dependent on the image size, thus, the delay
can be dramatically reduced if a precise region of interest
can be defined. This paper proposes a simple yet effective
technique that predicts the region of interest based on the in-
formation from the built-in accelerometer. For eye tracking
and blink detection itself, we employ previous performance-
proven methods.

3.3 Prediction during Detection Phase

After observing the behavior of tablet PC users, we found
the following hints:

(b) Horizontal predic-
tion

(a) Vertical prediction

Figure 2: Predicting ROI during detection phase

) @: :30° (m) © : 45° (n) ©:60° (o) © :90°

Figure 3: Examples of eye locations in the camera
frame by position of a mobile device (camera posi-
tion: 1°* row: top-middle, 2" row: left-middle, 3"¢
row: right-middle)

1. The vertical tilt angle of the device remains between
0°and 90°in most cases.

2. The user maintains a certain distance to the device,
thus the size of one eye does not exceed 80% of the
captured camera frame

3. Depending on the position of the camera, the location
of the eyes changes.

Our method that initially finds eyes in the video frame is
devised based on the observations above. Figure 2(a) shows
the relation between the vertical tilt angle of the device and
the vertical location of the user’s eyes. Let © denote the
tilt angle of the device and ® denote the view angle of the
device’s front-facing camera. Since @ is fixed, © decides the
vertical location of the eyes. As the tablet PC leans forward
(i.e., © increases), the eye location moves towards the top
of the camera frame, and as © decreases the eye location
moves to the bottom of the frame. The location of the front
camera also affects the prediction of the eye location. Tablet
PCs can be used either portrait or landscape modes by ap-
plications. When the camera is located on the left (right)
side, the eye is also likely to be located on the left (right)
side in the frame. Figure 3 is an example that shows how
the eye position varies depending on the vertical tilt angle
and the location of the camera. Based on the information
from the in-built accelerometer, our method calculates both

o

T

[]

02

P
— o —>

4

19 1202112223} 24 23 1 24 23 1 24
27128 [29 1 30 / 29 1 30 / 29 | 30
3313435136 ° 35 ° 3 35 1 3

(d) (e) ()

Figure 4: Examples of initial eye detection algorithm

the vertical tilt angle and the position of the front camera
to predict a region where an eye exist. We split the image
frame into 9 sub-regions, thus, the initially predicted region
falls into one of the 9 sub-regions. For example, the initial
region becomes left-middle one if the camera is located on
the left side of the device and the device is tilted about 45
degrees. Now, we try to find an eye inside the predicted
one sub-region (Figure 4(a) and (d)). If an eye is not found
there, we expand the region of interest to 4 sub-regions (Fig-
ure 4(b) and (e)) and try to find eyes again. If an eye is not
found, we lastly expand the region to 7 sub-regions (Fig-
ure 4(c) and (f)). Our method stops expanding the region
at the third attempt because there is almost no chance to
find an eye in the remaining % areas.

3.4 Prediction during Tracking Phase

Figure 5 illustrates our eye detection algorithm during the
Tracking Phase. Due to the movement of user’s hand that
holds the mobile device, the eye frequently falls out of the
Search Region. In this case, existing schemes discard the
current video frame and try to find eyes in the Detection
Phase, resulting in severe delays. If the eye is not found in
the Search Region during the Tracking Phase, our algorithm
tries to find the eye in the current frame once more based on
the information of vertical and horizontal tilt angle differ-
ence. Suppose that the device is tilted up from the vertical
tilt angle of ©,, to ©,. Similarly, suppose that the horizon-
tal tilt angle changed from ¥,, to W,. Then the position
of the eye moves towards the upper left area in the frame.
One of the four areas in which our scheme tries to find the
eye is decided based on the angle difference of the device,
which is defined in Figure 5(c). The four areas are split by
Vi and H,, on the image frame. V,, is a vertical line that is
drawn on the location of the detected eye when the vertical
tilt angle is ©,,, and H,, is a horizontal line that is drawn
on the location of the detected eye when the horizontal tilt
angle is ¥,

Figure 6 describes our combined detection and tracking
algorithm. Namely, it tries to find eyes in the first region of
interest. If at least one eye is found in the first region, it goes
to the Tracking Phase. If it fails, the region increases in size
in the second and the third attempts. If it fails in the third
region, the current image frame is discarded and it starts
over with the next frame. Once it enters the Tracking Phase,
the region of interest is predicted based on the vertical and
the horizontal tilt angles. Our algorithm looks for the eye

Vm %m@

? PDSI%
®m > BOn Om > BOn
¥m < ¥n ¥m > ¥n

()

Figure 5: Predicting ROI during tracking phase

in the predicted region of interest when it fails to find the
eye in the Search Region.

4. EVALUATION

We implemented EyeGuardian on a Samsung Galaxy Tab
10.1. Samsung Galaxy Tab runs Android 3.1 version, and
we adopted OpenCV [2] library for the purpose of image
processing. In the next subsections, we present the eye de-
tection schemes in the Detection and the Tracking Phases
and blink detection algorithm we used.

4.1 Eye Detection

We used Haar Cascade Classifiers for detecting the eyes
during the Detection Phase, which was first developed by
Paul Viola and Michael Jones [15] and later extended by
Rainer et al. [10] to use diagonal features. Integral images
enable an algorithm to rapidly detect any object using Ad-
aBoost Classifier Cascades [7] that are based on Haar-like
features. This technique is very commonly used for the real
time face detection and also works fairly well with eye de-
tection [5].

After locating the eye, the online template of the user’s
eye is extracted and used in the Tracking Phase. For the eye
tracking, we used a simple algorithm to update the Search
Region centered in the eyes. At each frame, centered eye
location in the Search Region is updated by the normalized
correlation coefficient proposed by Grauman et al. [8].

4.2 Blink Detection

Blink detection is purely based on the correlation scores
generated by matching templates between opened eyes and
closed eyes in the Tracking Phase. The blink detection
method proposed in [8] provides two advantages when it is
applied to EyeGuardian. Our goal is to provide a lightweight
app with a reasonable accuracy. EyeGuardian is lightweight
since no extra computation is needed due to the pre-computed
correlation scores at each frame during the Track Phase.
Additionally, the blink detection method proposed in [8] im-
proves the blink detection accuracy. According to the exper-
iment results in [6], the number of false negatives and the
false positives of the aforementioned blink detection method

==

Video Input

_ n™ Initial Rol
‘ n=n+l Prediction
Eye Detection in Rol
HNO

Yes

Eye Tracking

Yes
No-

Rol Prediction No

Figure 6: Proposed eye detection and tracking algo-
rithm

was almost the same. Most of the previous eye blink detec-
tion applications have targeted the HCI function. For exam-
ple, the eye blink has the function of the computer mouse
click, and the accuracy of detecting the blinks is critical to
the performance of the application. Hence, minimizing the
number of false positives and false negatives was important
in the previous eye blink detection applications. In contrast,
in our case if the ratio of false positive and false negative is
close to one, the number of false detections is not an issue.
Namely, our approach focuses on recording the number of
eye blinks during a certain period of time, and the blink
miss is compensated by a false positive. Hence, the number
of blinks can still be estimated accurately.

4.3 Blinking Criterion for Users

In order to prevent CVS, 20-20-20 rule [3] recommends
people to look at a different place 20 feet away the computer
screen for 20 seconds, every 20 minutes during the use of
computers. The average human eye blink rate is 22.448.9
times per minute under relaxed condition [14]. However, it
decreases to 10.51+6.5 times per minute while reading a book
and 7.6£6.7 times per minute while doing near work such as
using the computer [14]. Hence, EyeGuardian monitors the
eye blink rate of the user for 20 minutes, and recommends
the users to rest their eyes if the number of eye blinks is
lower than 13.5 (22.4-8.9) times per minute.

4.4 Detection and Tracking Accuracy

In this section, we present the performance improvement
of our approach via experiments. Five participants used
the tablet PC not being aware of the eye detection function
during the experiments. The most crucial function of the
EyeGuardian is to detect the user’s eyes successfully. Since
the eyes are in the Region of Interest, we tested how accu-
rately EyeGuardian detected the Region of Interest during
the Detection Phase. According to the experiment results,
the accuracy of detecting the region of interest was about

User| Total No — Prediction | < 20
Frames | Prediction | Percentage Percentage| 13 = Application Only
16 Lo L
T [11773 | 9516 79.13 (%) | 10458 8883 (%) | 14 " EeGuardn
2 10032 9368 93.38 (%) | 9813 97.81 (%) 1
3 10053 7676 76.35 (%) | 9126 90.78 (%) 10 |
4 10119 8964 88.58 (%) | 9513 90.11 (%) 8
5 10039 9637 95.99 (%) | 9993 99.54 (%) 6
4
Table 1: Improvements of eye detection during 2
tracking phase 0 . ‘ :

50%, 70%, and 90% in the first, second, and the third step,
respectively.

In order to evaluate the performance of the Tracking Phase,
we recorded the number of frames that did not have the
user’s eyes in the search region. We evaluated our approach
by checking the overall reduced processing time achieved
from discarding the aforementioned frames. FEach experi-
ment was conducted 10 times and the average values of the
experiment results are presented in Table 1. The first and
second column of Table 1 represent the user number and the
total number of the frames used for detecting each user’s eye
blinks, respectively. The third and fourth column represent
the number of frames that detected eye blinks during the
tracking phase without using our approach and its percent-
age, respectively. The fifth and sixth column represent the
number of frames that detected eye blinks during the track-
ing phase using our approach and its percentage, respec-
tively. Even though the amount of performance improve-
ment depends on the user’s usage behavior and the number
of concurrently running applications, the 86.82% of the to-
tal image frames detected the eyes inside the Search Region
during the tracking phase without using our approach. The
remaining 13.18% of the total image frames failed to detect
the eyes in the Search Region and returned back to Tracking
Phase. With our approach, the 94.15% of the total image
frames detected the eyes inside the Search Region during the
Tracking Phase. In the case of the remaining 5.85% of the
image frames, the eyes were out of the image or the image
was too blurry for the eyes to be detected. Hence, our pre-
diction method reduces the processing time by only using
7.33% of the total image frame during the Detection Phase,
and the reduced processing time reduces power consump-
tion.

4.5 Energy Consumption

Since EyeGuardian is always running in the background
on the tablet PC, the energy efficiency is a crucial factor to
be considered. We read the remaining battery level via the
Android 3.1(Honeycomb) default battery level indicator. It
is true that the battery level indicated by the default bat-
tery app is not as accurate as measuring the battery level
via the battery meter. Since we did not have such a device,
we had to measure the battery level based on the default
battery app. In order to compensate the inaccuracy of the
battery app, we fully charged Galaxy Tab before conduct-
ing each experiment. Since we used a new Galaxy Tab,
the battery status was reliable. Additionally, we conducted
all the experiments on the same device. We measured the
battery power consumption of EyeGuardian by running it
concurrently with one of the following three apps — a web
browser with wifi connection, an ebook reader, and a movie

No Application Web Browsing Book Reading Movie Playback

Figure 7: Energy consumption per hour (%)

player. Each measurement was conducted for three hours
and we repeated the same measurement three times. Hence,
we measured EyeGuardian’s power consumption nine times.
After each measurement, the tablet PC was fully charged,
and the display brightness was always set to 80%. As shown
in Figure 7, it is interesting to see that playing a movie
clip consumes far less energy than browsing the web. The
CPU usage meter showed that playing a movie clip only
consumed about 25% of CPU resource. On the other hand,
there was “user interaction” every time we measured the en-
ergy consumption of web browsing and book reading. We
kept accessing different websites while browsing the web. In
addition, we intentionally browsed web pages that contain a
lot of images and flash movie clips rather than only browsing
the text based web pages to see how performance changes on
a relatively harsh condition. This may have resulted in more
power consumption of the web browser than the other two
applications. The measurement results that appear in Fig-
ure 7 indicate that EyeGuardian consumes 2.15% of the total
battery capacity per hour alone. Considering the case that
EyeGuardian and another app were running concurrently,
EyeGuardian consumed similar amount of power when it
was operated alone. EyeGuardian did not cause significant
battery drainage even under the multitasking environment.
Our approach is thus feasible from the energy budget stand-
point, since it only consumes about 2% of the total battery
capacity per hour alone or under multitasking environment.
However, battery consumption may be an issue running Eye-
Guardian on a smartphone. Galaxy Tab adopts a 7000 mAh
battery that is 4-5 times larger than the average smartphone
batteries. EyeGuardian consumes a small amount of energy
on Galaxy Tab that has a large battery. We can port Eye-
Guardian on a smartphone, however, it may worsen the bat-
tery drain. Developing an energy efficient eye tracking and
blink detection application for smartphones will be a part of
our future work.

4.6 Frame Rate

There is a correlation between the frame rate and the blink
detection. If the frame rate is too low, the probability miss-
ing the blinks increases while extremely high frame rate does
not improve the blink detection accuracy but only consumes
power. Since the average length of a blink is 300-400 ms, in
order to detect the blinks the frame rate should be at least
10 fps. It is crucial to check whether or not the frame rate
is above 10 fps under multitasking environment. We ran
EyeGuardian concurrently with one of the following three
apps-a web browser with wifi connection, an ebook reader,

Application| Average| Max Min Standard
Deviation

Web 12.46 14.43 9.77 1.98

Browseing

Book 14.17 14.57 12.91 0.87

Reading

Movie 13.69 14.53 11.92 1.16

Playback

Table 2: Frame per second by applications

and a movie player. The maximum recordable frame rate of
the front camera is 15 fps. The average frame rate of the
front camera during reading an ebook was 14.17+0.87 fps,
while the maximum frame rate was close to 15 fps (Table 2).
The average frame rates during watching a movie and using
the web-browser were 13.694+1.16 fps, and 12.46+1.98 fps,
respectively. Playing a movie on a tablet PC consumes re-
sources continuously until the movie ends or the user stops
the movie. However, web browser uses relatively more re-
sources loading web pages on the web browser than playing
a movie. The more resources consumed, the less frame rate.

S. CONCLUSION

This paper proposes a novel mobile application to alert
a user at risk of CVS and protects their eyes from possible
damages. To accomplish this, EyeGuardian monitors the
user’s eye blink frequency via the front camera of the device
in a non intrusive way. EyeGuardian determines whether
or not it will recommend the users to rest their eyes based
on the user’s eye blink rate. The built-in accelerometer of
the tablet PC enables EyeGuardian to track the position
of the device and estimate the location of the user’s eyes.
The processing time of detecting the eyes from the images
acquired from the front camera is considerably reduced by
predicting the region of interest where the eyes could ex-
ist in the images rather than scanning the full-size images.
Our approach may also be extended to various other appli-
cations. One possible application is providing health advice
by predicting the user’s drowsiness and fatigue via the user’s
movement and eye blink frequency. As a future work, we
will focus on developing an eye detection algorithm that is
suitable for mobile environment — e.g., an algorithm that
efficiently detects the eyes from multiple viewing angles and
in various lighting conditions. Finally, we plan to verify the
performance of EyeGuardian in reducing of the vision prob-
lems associated with CVS by conducting clinical trials in
cooperation with the School of Nursing.

6 REFERENCES

[1] http://online.wsj.com/article/
SB10001424052748704868604575433361436276340.html?
mod=WSJ_hpp_MIDDLENexttoWhatsNewsThird.

[2] http://opencv.willowgarage.com/wiki/Android.

[3] www.osteopathic.org.

[4] BATISTA, J. A drowsiness and point of attention monitoring

system for driver vigilance. In Intelligent Transportation

Systems Conference, 2007. ITSC 2007. IEEE (30 2007-oct.

32007), pp. 702 —708.

BrADSKI, G., AND KAEHLER, A. Learning OpenC'V.

O’Reilly Media, Inc., 2008.

[6] CHAU, M., AND BETKE, M. Real time eye tracking and
blink detection with usb cameras. Tech. rep., 2005.

[7] FREUND, Y., AND SCHAPIRE, R. E. A decision-theoretic
generalization of on-line learning and an application to

[5

B

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

boosting. In Proceedings of the Second European
Conference on Computational Learning Theory (London,
UK, 1995), Springer-Verlag, pp. 23-37.

GRAUMAN, K., BETKE, M., GIps, J., AND BrADsKI, G.
Communication via eye blinks - detection and duration
analysis in real time. In Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on (2001), vol. 1,

pp. [-1010 — I-1017 vol.1.

GRAUMAN, K., BETKE, M., LOMBARDI, J., GIPS, J., AND
BRraDskI, G. R. Communication via eye blinks and eyebrow
raises: Video-based human-computer interfaces. In
UNIVERSAL ACCESS IN THE INFORMATION
SOCIETY (2003), pp. 2-4.

LIENHART, R., AND MAYDT, J. An extended set of haar-like
features for rapid object detection. In Image Processing.
2002. Proceedings. 2002 International Conference on
(2002), vol. 1, pp. I-900 — I-903 vol.1.

MAGEE, J. J., ScorT, M. R., WABER, B. N., AND BETKE,
M. Eyekeys: A real-time vision interface based on gaze
detection from a low-grade video camera. In In Proceedings
of the IEEE Workshop on Real-Time Vision for
Human-Computer Interaction (RTV{HCI (2004),

pp. 159-166.

MiLuzzo, E., WaNG, T., AND CAMPBELL, A. T. Eyephone:
activating mobile phones with your eyes. In Proceedings of
the second ACM SIGCOMM workshop on Networking,
systems, and applications on mobile handhelds (New York,
NY, USA, 2010), MobiHeld ’10, ACM, pp. 15-20.

Picor, A., CAPLIER, A., AND CHARBONNIER, S.
Comparison between eog and high frame rate camera for
drowsiness detection. In Applications of Computer Vision
(WACYV), 2009 Workshop on (dec. 2009), pp. 1 —6.
TsuBoTA, K. Tear dynamics and dry eye. Progress in
Retinal and Eye Research 17, 4 (1998), 565 — 596.

Viora, P., AND JONES, M. Rapid object detection using a
boosted cascade of simple features. In Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on (2001),
vol. 1, pp. I-511 — I-518 vol.1.

YAN, Z., Hu, L., CHEN, H., AND Lu, F. Computer vision
syndrome: A widely spreading but largely unknown
epidemic among computer users. Comput. Hum. Behav. 24
(September 2008), 2026—-2042.

