
Distributed Web App Execution with Chunks

Justin Mazzola Paluska Hubert Pham Steve Ward
MIT CSAIL, Cambridge, MA, U.S.A.

1. Introduction Modern computer systems contain an
enormous amount of structure (e.g., network fabrics,
storage hierarchies, and software layers) that is hidden
away from programmers by common frameworks (e.g.,
client/server or web programming). We explore a new
computation model for dynamically organizing computa-
tion around the structure of available compute resources.
In our model, all nodes share a unified execution envi-
ronment and migrate code and computation between each
other. Over time, a “client” node may (1) download more
code to run locally to provide a richer user experience or
(2) generate and upload code to remote servers to take ad-
vantage of extra processing power.

We demonstrate our model through PhotoBoss, a suite
of web apps for editing high-resolution photos. Photo-
Boss includes a photo organization tool, Quickr, and a
photo editing tool, PhotoChop. PhotoChop exposes a
number of customizable image filters to the user, many
of which are compute-intensive and benefit from dynamic
offload guided by the structure of available resources.

2. Chunk Abstraction Our previous work [1] explored
a generic data model for low-latency access and fast ma-
nipulation of large objects that composes all objects as
graphs of fixed-size, network-accessible chunks. A chunk
is a fixed-sized array of fixed-sized slots. Each slot can
contain either uninterpreted scalar data or an explicitly
marked link to another chunk. Links contain references
to, not addresses of, other chunks, allowing chunks to mi-
grate among nodes sharing the chunks. Chunks abstract
structure, enabling decision making based on what chunks
link to which other chunks. Quickr uses chunks to expose
multiple resolutions of each photo so that web clients may
only download the particular resolution they need.

3. Computing with Chunks Our demo extends the data-
only chunk model to include chunk-based computation
within a chunk-based virtual machine called SCVM.
SCVM maintains all of its runtime state in chunks, as
shown in Figure 1. At the root of any computation is
a Thread chunk that links to chunks containing all of
the state for that thread of computation, including the pro-
gram counter (PC), the environment (heap) of the chunk,
and thread-local temporary storage. In order to expose
the maximum amount of program structure in the chunk
graph, we compile each basic block of code into its own
chunk and use links to connect each basic block to other
blocks to which it may continue, or to closures it may call.

PhotoChop runs an SCVM interpreter within the web
browser to execute photo filter code. Since PhotoChop
may run on a computationally weak web client, in order to

Thread

Env

Closure

Code
"root 0"

"slot 2"

"pushs 1"

"==?"

"bt"

"branch"

Code
"pushs 1"

"return 1"

Code
"root 0"

"slot 2"

"pushs 1"

"root 0"

"sub"

"branch"

"slot 2"

Env

"4"

"3"

Code

"call 1"

"mul"

"return 1"

"root 0"

←PC slot #

P
C

 chunk

Cu
rre

nt
 E

nv
iro

nm
en

t

Current
Closure

Parent Environment

Lexical Environment

Closure
Function

"n"→

Figure 1: A SCVM thread running factorial(4).

enable the user to interactively experiment with filter com-
binations and filter parameters, PhotoChop normally only
operates on small resolution versions of photos. When the
user finishes her experimentation, PhotoChop generates
SCVM bytecode to apply the filters and usually migrates
the code a remote server to operate on the high resolution
photos. Depending on communication costs, PhotoChop
may opt to run all of the bytecode locally, or split compu-
tation between local and remote servers.

To migrate computation between SCVM instances, the
source VM need only send the root Thread chunk to the
destination VM. As the destination VM reads links from
the chunk, it will request more chunks from the source
VM until it has copied enough chunks to make progress
on the computation. While our migration strategy is sim-
ilar to on-demand paging schemes, we may exploit our
chunk representation to speed up migration by (1) sending
only small portions of programs (such as individual func-
tions or particular execution paths) rather than an entire
binary and (2) using the structure encoded in the chunk
graph to pre-fetch items [2].

4. Demo Requirements Our demo consists of PhotoBoss
running on a laptop connecting to a remote server over a
network. We will need power and a table, but can provide
our own wireless network.
References
[1] Justin Mazzola Paluska and Hubert Pham. Interactive streaming of

structured data. In PerCom, 2010.

[2] Justin Mazzola Paluska, Hubert Pham, and Steve Ward. Structuring
the unstructured middle with chunk computing. In HotOS, 2011.


