
Cloud Displays for Mobile Users in a Display Cloud

Lars Tiede, John Markus Bjørndalen, and Otto J. Anshus
Department of Computer Science

University of Tromsø, Norway
lars.tiede@uit.no, jmb@cs.uit.no, otto@cs.uit.no

ABSTRACT
The display cloud model allows users to select local and remote
programmable displays, and add them to a user specific cloud dis-
play where the user can arrange them freely. On a cloud display,
the abstraction representing remote graphical content is termed a
visual. It can be positioned and resized freely. Wherever a visual
touches a part of the cloud display with physical displays present,
the physical displays will show the corresponding graphical con-
tent of the visual. The physical displays can simultaneously show
several visuals from one or many users.

The display cloud approach is suitable for public environments
because we do not allow user customization of the displays, a user
does not have to expose any data except the actual graphical content
to the display computers, and he does not have to go through the
displays to do user interaction with his resources. Mobile devices
have an essential role in achieving this. They provide, for each user,
the means to detect displays, to add displays to the user’s cloud
display, to manage displays and visuals in a cloud display, and to
interact with visuals.

An insight is that the display cloud model is maximally decen-
tralized between users, and maximally centralized per user. We
conducted a set of experiments on a prototype using 28 display
computers with up to 21 users. The results show that the prototype
reacts interactively fast for each, and scales well to many users.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Keywords
ubiquitous displays, display clouds, cloud displays

1. INTRODUCTION
The research problem we focus on is how to let a user display

content produced on his own computers onto one or several dis-
plays both local and remote to the user. The research challenges
are to understand how to do this (i) in a scalable way with regards

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 2013 ACM 978-1-4503-1421-3/13/02 ...$15.00.

to performance metrics like frame rates, interactive latency, and
consumed bandwidth for both a single and multiple users when the
number of displays increase, (ii) in a simple way so that a user can
rapidly display what he wishes, (iii) in a flexible way with regards
to tiling together several displays to create a larger and higher reso-
lution display, (iv) in a secure way demanding no or very little more
trust from the user than what he has already given elsewhere, using
his own computers.

The methodology applied is systems research where we research
possible architectures, designs and implementations of prototype
systems, and document the performance characteristics of at least
one such prototype. We propose, and have partially implemented,
the Display Cloud approach. A user with a mobile device can easily
configure a cloud display composed of one or many programmable
displays from a loose set of displays called a display cloud. Using
the mobile device, the user can then securely and scalably display
content produced at or controlled by his computers onto the cloud
display. A user can flexibly define many content entities, termed
visuals. When a user moves from one display to another across a
room, building, city, country or continent, the visuals can follow
the user or be displayed wherever the user wants as long as the
displays are a part of the user’s cloud display.

As a case, let’s assume that Amy meets her friends at a coffee
shop and wants to show them pictures she has on her home compu-
ter. There is a large display cloud enabled display above the table.
Amy takes her smartphone, starts the display cloud app, and scans a
unique ID, a QR code, on the display. The app then connects to the
display and Amy sees it represented as a rectangle on her phone.
The new display has become a part of her phone’s cloud display
and can be dragged and positioned relative to any other display in
her cloud display using the phone. Amy then uses the phone to
select a picture viewing application on her home computer as the
source for a visual. The visual is represented on the phone as a
rectangle, and Amy drags the rectangle onto the new display’s rect-
angle to make it visible. The display cloud system starts a viewer
on the new display, and it begins to show the content produced by
Amy’s home computer. Through the smartphone, she can freely
reposition and resize the visual content on the large display, and
interact with the home computer application. Amy’s friends can
now watch the pictures on the large display. After Amy is done,
she removes the coffee shop display from her cloud display, and all
content delivered from Amy’s home computer disappears. If Amy
forgets to manually delete the display from the cloud display, it will
automatically happen when the smartphone discovers that Amy has
moved away.

We assume that a user will always have a mobile device avail-
able. We use the mobile device to (i) determine the location of a
user, (ii) detect physically nearby displays, (iii) quickly set up one



or several displays for temporary use, (iv) establish connection be-
tween the mobile device, the displays and a user’s remote PC so
that user input is transferred to the PC without involving the dis-
play(s) and display output is transferred onto the displays directly
from the PC.

We observe that private and public spaces have an increasing
number of displays. The expected proliferation of Android- and
iOS-based consumer televisions and displays make it realistic to
expect cheap programmable displays to be ubiquitous in many en-
vironments.

The trend towards open programmable displays everywhere com-
bined with small always present mobile devices provides for the
technologies needed to let us do better than today, whether we are at
home, at work, or travelling: information may be displayed every-
where, in sizes suitable for multiple viewers and a lot of informa-
tion may be displayed simultaneously.

The way we perceive ubiquitous displays is different from the
traditional way of perceiving displays. Traditionally, displays are
output devices connected to a single computer and represent a sin-
gle, closed area on which the computer places all its visual con-
tent. This one-to-one relationship between computers and displays
makes it harder to use the displays in the settings we described
above. We need to easily compose several physically close displays
into one larger display to get higher resolution and larger size. We
also need to easily move display content between displays when we
move from one place to another.

There are existing approaches to use more than one display at
a time, either by connecting several displays to one computer in
a multi-monitor setup, or by combining several displays and com-
puters into a configuration such as a tiled display wall[9]. With
these approaches, multiple displays become accessible, and display
content can be split between several displays. However, these ap-
proaches typically assume a fixed number of displays in one room,
and will not support a user moving outside of the room to other
displays. Limited scalability with regards to the number of viewers
and the number of displays when using VNC[16]-style of centra-
lized control of the displays is documented in [19]. While VNC
can support many users viewing the same low resolution desktop,
the frame rate will rapidly drop as the resolution of the desktop
increases.

We can avoid the limitations and drawbacks described above and
achieve better functionality and scaling if we perceive a set of dis-
plays as a continuum; an open, distributed, and decentralized dis-
play surface. We term this a cloud display. Users can define their
own cloud display by composing local and remote displays from
the display cloud - the set of displays with the necessary function-
ality to be enrolled into a cloud display. A cloud display is flexible
with respect to the number of physical displays that are part of it,
the number of displays that are actively displaying content, and the
spatial arrangement. On a cloud display, a user can put any kind
of graphical content produced at his local and remote compute re-
sources, termed visuals. Visuals that are currently supported by our
prototype are VNC desktops and images fetched from web servers.
Other technologies we expect to support include video streaming
and desktop sharing approaches such as Apple’s AirPlay.

To achieve protection, security, and ease of use for a user when
he moves between displays, we use his mobile device to incorporate
nearby physical displays into the user’s cloud display. A key point
is that displays only have access to the graphical output, and then
only through temporary capabilities so that when a user session
terminates, the display(s) cannot continue to pull in data from the
user’s PC. Using the mobile device for user input means that we do
not have to trust the displays; a display cannot easily snoop on the

user’s input and capture passwords or other sensitive information
entered into applications.

We distinguish the Display Cloud model from research on public
displays like those in [2], [3], and [14] in that we have a machine
centric focus. We have not investigated how users react to different
ways of doing and using public apps. Furthermore, we propose
or assume no special public display apps, and we have no floor
control system. We have only researched and documented (i) a
system making one or several displays into shared displays that
users can freely compose and use as display surfaces. It is entirely
up to the users what they display and where on the displays they
display it. (ii) A system where mobile devices play a crucial part
to achieve security by letting the users only trust what they already
trust: their own computers. (iii) A system where mobile devices
provide user input to the computers running the application(s) that
produce output for the displays.

We believe that the Display Cloud system can be used on public
displays for advertisements and informational purposes as well as
by individuals briefly needing larger displays.

D3
D2

3 ("d
rag")

PC hosting 
V1's source

User

Mobile deviceDisplay cloud

...

D1

Dn

Cloud display UI
D1 D2

D3

V1

V1

First, the mobile device detects local 
D1 and D2. It already knows the 
remote D3 (1)

Then, the user adds D1, D2, and D3 to 
his cloud display, in an arrangement of 
his choosing (2)

Then, the user arranges visuals (here, 
only one) in his cloud display (3), the 
mobile device instructs the affected 
displays (4) and visual sources (5) to 
connect, and then content is 
transported from the visual source to 
the displays (6)

4

5

6

1

2

Figure 1: Display cloud, cloud displays, and visuals

2. USAGE SCENARIOS
Figure 1 illustrates the concepts used in the following usage sce-

narios. The scenarios hint at some functionalities and features not
yet available in the prototype. However, we have found the scenar-
ios useful in describing the range of possibilities, and they help us
identify issues to be solved.

Scenario 1: In the Lab, Giving a Presentation. Ken, a visit-
ing researcher, and his hosts meet in a lab for a presentation. The
lab has a tiled display wall comprised of many displays. Ken uses
his smartphone to detect and add the displays of the display wall to
his cloud display, and arranges them into rows and columns in the
same way as the display wall. Ken has already configured a visual
using his cloud-hosted virtual machine as the visual source. On the
smartphone, he now selects where on the cloud display the output
should take place by moving the visual over the display wall’s dis-
plays. His smartphone instructs the displays overlapping with the
visual to start a viewer and display the remote content. Ken can



interactively resize and reposition the output to cover less or more
area of the display wall, and the smartphone will direct the displays
accordingly. After the presentation is finished, discussion starts and
others move some of their own visuals to the display wall as well.
Ken can resize his visual to make more display space available for
the others’ visuals. When the discussion is over and the partici-
pants leave the lab, their smartphones detect that they are no longer
in the lab, and each display cloud app automatically detaches the
displays from its respective cloud display, and their computers are
told to serve no more content to the display wall.

Scenario 2: At the Hotel, Doing Remote Lecturing. Ken
missed his flight back, and now has to give a lecture from the hotel
room. He adds the large displays in the lecture hall as well as the
hotel room display to his smartphone’s cloud display. He defines
three visuals: one with his laptop presentation as visual source, one
with his laptop’s camera as source, and one with the lecture hall’s
audience-facing camera as source. In the cloud display user inter-
face, he moves the first two visuals to the lecture hall displays, and
the last one to his hotel room’s display. The students can now watch
the lecture slides as well as a video of Ken on the auditorium’s dis-
plays, and Ken can watch the students on the hotel room’s display.

Scenario 3: At the Mall, Hanging Out. A group of teenagers
meets at a mall. The mall has large displays everywhere. It also
has sensors tracking customers. Both are made available to the
mall shops and are paid for through subscriptions. For a customer,
a display is complimentary to use for a brief period when standing
next to it. The displays are used by the shops to display advertise-
ments and coupon visuals, and by customers to display both their
own visuals and interact with advertisement visuals.

When the mall’s sensors and related analytics detect the group
of teenagers, advertisement visuals looking for groups of teenage
customers swarm towards displays near the teenagers and follow
them around the mall. A teenager interested in an advertisement
on a nearby display uses a smartphone to rapidly include the dis-
play to the smartphone’s cloud display. Advertisement visuals, but
not other customers’ visuals, on that display automatically become
available for selection. From the cloud display user interface, the
teenager selects the interesting advertisement visual, and an in-
stance of the advertisement visual is created for the teenager. The
teenager can now interact with this instance of the advertisement
visual. Other teenagers get their own instance, allowing each to
browse and purchase products independently from each other.

After a while, the teenagers move on, their smartphones detect
this and instruct the remote computers to stop sending data to the
displays left behind. Alternatively, the smartphones can automat-
ically add and delete nearby displays to their cloud displays, al-
lowing the users private and advertisement instances of visuals to
follow them around, moving from display to display around the
mall. In both cases the visuals live on, and can be displayed again
on other displays.

3. DISPLAY CLOUD ARCHITECTURE
To make a set of displays into a display cloud, and to make cloud

displays from the display cloud, there are several primary function-
alities we have discovered that we either need or should not have.

A display must be able to interact with a mobile device. The
minimum functionality that must be in place for a display is to let
a mobile device customize it, either by setting parameters for func-
tionality already present, or by accepting new functionality given
to it by the mobile device.

In the first case, the mobile device must trust that the display
does not misbehave by, say, copying graphical content it sees to a
third party. However, it cannot touch the user’s original remote data

or discover user passwords because these are handled exclusively
between the mobile device and the user’s remote computers. In the
second case, the display must trust the mobile device as well. The
mobile device can make it misbehave in obvious ways, like display-
ing unintended information from the internet, or adding the display
computer to a botnet. Sandboxing can help reduce such dangers.
Perhaps one day we will understand how to let the display figure
out what an uploaded functionality will actually do, and based on
this reject it or not.

Presently, we use the first approach, preinstalled functionality,
recognizing that the mobile device cannot trust the display. This is
a simple approach with easy to understand implications: the visuals
can be compromised, but nothing else.

Functionality making all user data received by displays dis-
appear from the display when the user wants to or when the user
moves away from the display. The display will delete all user data
it has received when the mobile device tells it to, and when the user
moves beyond a certain distance from the display. Further, when a
user quits using a display, the display must not be able to continue
pulling in data from the user’s remote computer. This is solved
by letting the remote computer refuse further requests from the dis-
play, either when instructed by the mobile device or if the computer
loses communication with the mobile device.

Mobile device functionality enabling it to dynamically dis-
cover nearby displays. This can be done in several ways using
technologies such as visual tags, NFC, or Bluetooth. We are cur-
rently looking into using QR codes on or next to the displays to
let mobile phones discover them and retrieve the URL or transport
level network address of the displays.

Mobile device functionality to compose displays into a cloud
display. The user tells the mobile device how the displays should
be arranged. The mobile device tells each display what it should
display. This is done at suitable frequencies, say, 25 times a second.
Interestingly, the displays have no knowledge of each other and do
not interact.

Further required mobile device functionality is to instruct the re-
mote PC about making visuals available only to the relevant dis-
plays in the cloud display, to define clones of visuals so that the
same content can be displayed on several displays, and to enable
the user to interact with the remote computer through the mobile
device.

A user’s remote computers have functionality to provide vi-
suals to the displays in a cloud display. Several approaches are
possible: (i) Each display pulls in from the remote computer what
the mobile device tells it to display. (ii) The remote computer
pushes to a display what the mobile device tells it to push. (iii)
The mobile device itself either pulls in visual content from the re-
mote PC, or it tells the PC to push the content to it. The mobile
device then acts as a proxy for the displays in either a push or a pull
mode.

Each approach has advantages and disadvantages which we don’t
have the space to expand on here. Presently, we use the first ap-
proach.

4. PROTOTYPE
We have developed a functioning prototype of a display cloud.

Many core functionalities are already implemented, including cre-
ating a cloud display, displaying visuals on the physical displays
of the cloud display, and moving them smoothly on and between
displays.

The prototype currently supports two approaches to transporting
graphical content from a remote computer to the displays compris-
ing a cloud display. In the VNC[16] approach, each display starts a



customized VNC viewer which then requests content from a VNC
server running on a remote computer. We also use an approach
where each display starts a simple picture viewer that requests im-
ages from a remote computer via HTTP.

Displays run a display daemon to make their functionality avail-
able to mobile devices. It listens for network connections from
mobile devices, and starts visual viewers on behalf of them. Visual
viewers only run as long as a user uses them; they are started and
terminated on demand. This introduces an overhead when view-
ers are started, but it makes sure that no user state is left behind
when the user stops using a display. It also minimizes persistent
resource usage on the displays. Presently, the prototype does not
discover when a user moves away, and the set of available displays
is statically configured.

The user controller composes the cloud display, i.e., it deals with
arranging displays, and creating, cloning, and placement of visuals.
The user interacts with it through a user interface. At the moment,
the user controller and the user interface run on a PC because we
haven’t yet ported them to mobile devices, but the infrastructure has
the necessary support for mobile versions. Most user interaction is
currently scripted to provide repeatability for experiments.

The visual controller manages a visual, i.e., it instructs displays
to start and stop viewers, and it instructs visual viewers which re-
gion of the visual must be shown and where to display it. There
is one visual controller instance for each visual that is managed by
the user controller. The visual controller will be responsible for au-
thorization features and proper interaction between users and visual
sources when we add mobile devices.

The prototype is implemented in Python, except for the view-
ers which are implemented in C. The VNC viewer is a modified
TightVNC viewer, and the image viewer is written from scratch.
All components currently run on Linux.

The visual sources are unmodified TightVNC servers and HTTP
servers. VNC servers support multiple viewers out of the box, so
we only needed to instruct the viewers to request their separate re-
gions to support splitting of a desktop to multiple physical displays.
Our VNC clients can scale pixels to support different resolution dis-
plays. Other remote desktop and content streaming systems that we
currently consider adding to our prototype will use different tech-
niques for multi-resolution support.

5. EVALUATION
We report on a subset of the experiments we have conducted and

their results. When changing a visual’s position 30 times a second,
we measured (i) how much time it took to move it on a single dis-
play and between displays, (ii) the consumed network bandwidth,
and (iii) the CPU load on the display computers. We varied the
number of users from 1 to 21. Each user had a single visual.

The computers were connected through a 1GBit switched Eth-
ernet. To emulate an environment with many displays, we used 28
quad-core PCs with Linux, modified TightVNC viewers and 28 dis-
plays. To easily view and control the experiments, we used PCs that
were located in a single room. We used the displays as if they were
arranged into one row. To emulate a user’s remote PC, we used
a single core PC with Linux and TightVNC server 1.3.10. When
increasing the number of users from 1 to 21, we used a cluster of
identical PCs so that each user had their own remote PC. To emulate
a mobile device, we ran a Python process on a display computer.
User input was scripted to ensure repeatability: a mobile device
process will 30 times a second tell a display to move a visual. The
number of mobile devices was increased from one to 21, spreading
them out so that a display computer would not host more than one
simulated mobile device.

The results show that moving a visual takes about 8ms on a sin-
gle display, and typically 150ms when a visual moves relatively
slowly (below 3 m/s on our displays) from one display into an-
other. The longer time for cross-display movement of a visual is
because the mobile device tells a display to boot an instance of the
visual viewer every time a visual enters a new display. When a vi-
sual moves faster than 3m/s, the time it takes to cross between dis-
plays is much longer, in some cases taking several seconds. When
this happened, we observed that VNC was the bottleneck, spending
most of the time doing protocol initiation. We suspect this is be-
cause we do too frequent connection establishments and teardowns.

When increasing the number of users, each with one visual, from
1 to 21 in the display cloud of 28 displays, the time to move each
visual increased insignificantly.

A single visual consumed 1MB/s bandwidth, adding to 21MB/s
with 21 visuals being displayed and moved. This is well below
the capacity of the 1Gbit/s Ethernet we used. If physical mobile
devices had been used instead of emulating them using processes,
this would not have impacted the measurements significantly be-
cause the data to be visualized does not go through a mobile device,
but directly from a remote PC to the displays.

Each mobile device process consumed less than 10% CPU on
the display computer where it was running. Based on benchmarks
we did, we estimate this to have been about 40% CPU load on a
Samsung Galaxy S3, which has a quad-core ARM processor and
1GB RAM, running Android 4.0.4. Using a native application in-
stead of a Python application is likely to be more efficient than the
estimated 40%.

We have not reported on frames per second (FPS). FPS is lim-
ited by the remote graphics technology we use for the experi-
ments, VNC. VNC frame rates have been reported elsewhere [7,
10]. Frame rates depend upon the number of pixels, the CPU of the
VNC server, and available networks. In our setting we see typical
VNC frame rates from 1-15 FPS while the viewers were moved and
re-drawn at 30 FPS.

6. RELATED WORK
We use the term “ubiquitous display” as has been described by

Molyneaux and Kortuem[13], who give an overview over possible
technologies for ubiquitous displays, and research challenges.

Work on distributed displays and in particular display walls
brought forth approaches to provide big centrally managed virtual
displays to programmers and users, for example SAGE[8] and Dis-
tributed Multiheaded X[12]. Seamless screen sharing over several
displays, taking not only different display resolutions but also ge-
ometrical distortions into account, has been investigated by Saku-
rai et al[17]. These systems usually have a static set of displays,
whereas our approach aims at scalability of display usage and shar-
ing to many users in many rooms, using a subset of many, possibly
even remote displays.

Beyond dealing with distributed displays alone, many works
have focused on enabling collaboration between users on large
single or distributed displays through screen sharing and more,
for example Dynamo[4], WeSpace[6], Impromptu[1], and Virtu-
ally Shared Displays[20]. These particular works differ from ours
mainly in that they focus on enabling collaboration including, for
some systems, file sharing, between users in one room.

All approaches above do not concern themselves with users com-
posing their own view on the set of available displays, i.e., there is
no conceptual equivalent to a cloud display. Mobile devices with
their special sensing functionalities do not exist or do not play es-
sential roles in their architectures. Several systems use the users’
laptops as interaction device and content provider, whereas we sep-



arate these roles (although visuals can be hosted on smartphones,
too). This makes our system more useful in a mobile environment
because a user only needs to carry a smartphone to pull in content
from anywhere. Another difference is that most of the above sys-
tems (except Dynamo) are tailored towards private environments
or the workplace, not public spaces where devices and users can
not be trusted. Furthermore, the referenced papers do not report on
scaling with respect to many concurrent users or many displays.

A different approach to making displays available to users more
dynamically is Dynamic Composable Computing[22], where log-
ical computers are composed ad-hoc from a set of available de-
vices. Unlike the display cloud approach, DCC goes beyond con-
cerning itself only with display mechanics: to facilitate user col-
laboration, it also supports interconnecting other services such as
different users’ file systems and clipboards. When it comes to dis-
play mechanics, in DCC, a (stationary or mobile) device’s frame-
buffer can be “connected” to a nearby display. However, DCC has
no equivalent to a “cloud display”, where users compose a virtual
display landscape out of several local and possibly remote displays:
while DCC includes the ability to connect several adjacent displays
to form one logical display[11], this larger virtual display is man-
aged as one large rectangular framebuffer and can therefore not be
arranged as flexibly as displays in a cloud display. Further, dis-
plays in DCC are always in exclusive use by one user, whereas in
a display cloud displays are always shared, and concurrent use, i.e.
different users using different areas on one display, is possible.

A related idea to the former approach is to use virtualization
to compose a “virtual platform” out of nearby resources with the
STRATUS[5] system. Such a virtual platform can consist of a dis-
play driven by some computer, a CPU that is located on another
computer (or even the user’s mobile device), and other periphery
in the network. The user brings a virtual machine using his mobile
device, and STRATUS migrates the virtual machine onto a custom
assembled virtual platform. This enables the user to not only show,
but also host, graphical content, desktops etc. in the local environ-
ment, without having to rely on the user’s resource-constrained mo-
bile device, or accessing resources over long distances. However, a
STRATUS virtual platform is vulnerable if any of the hosting com-
puters are compromised; in our approach, only the shared graphical
content and information about how to reach it is shared with public
computers. Furthermore, STRATUS does not support swiftly mov-
ing graphical content across displays, sharing one display between
several users, or using several displays to compose a cloud display.

No approach mentioned so far has its main focus on enabling
users to interact with their own applications on public displays,
which present challenges of their own. An early work in this area
is the "personal server" by Want et al[21]. Here, the user’s mobile
device, a custom display-less prototype, hosts the user’s applica-
tion, makes its functionality available through a webserver, and a
browser running on the public display accesses this webserver to
show the application to the user. The personal server device the
user carries has only very limited user input facilities, so the user
normally uses the computer controlling the display for input. In
consequence, the public display must be trusted with user input.

Later, when mobile device technology had progressed, Raghu-
nath et al introduced the “Inverted Browser”[15], in which the
user’s mobile device pushes content to a modified web browser run-
ning on the public display. Here, the user uses his mobile device
for interaction too: input on the mobile device is being forwarded
to the public display. While this avoids using input devices on the
public display directly, it does not alleviate the associated security
threat: user input can still be compromised by the public display.
Both personal server and inverted browser have in common that

the user’s mobile device plays the role of the application host, so
that applications are confined to the resource-constrained mobile
device. In the display cloud approach, however, applications can,
but do not have to be hosted on the user’s mobile device, allowing
for more resource-demanding applications.

When cloud computing for hosting users’ applications entered
the scene, Satyanarayanan et al introduced Cloudlets[18], where
virtual machines hosting the user’s applications are synthesized
near the physical location of both the user and the (single) pub-
lic display. For this, the Cloudlets system uses on-site compute
hardware, for example some computers in a coffee shop. A virtual
machine is assembled from a “base” VM image that is available
already (for example a vanilla Linux distribution) and an “overlay”
image that the user brings along on his mobile device. After boot-
ing the assembled VM, the user interacts with it using his mobile
device, and the public display shows the VM’s display output. This
approach enables the user to leverage the computation power of
stationary hardware (applications need not be hosted on his mobile
device), while at the same time allowing for applications that de-
mand low latency between input device, application, and display
(the application runs physically nearby). In our approach, these
latencies are indeed higher, as the compute resources hosting visu-
als are often not co-located with the user and the public displays
he is using. However, as there is no restriction in our approach to
where visual sources can be hosted, a display cloud user could use
cloudlets to host visual sources he then uses in his cloud display.
Trade-offs to using cloudlets include that assembling a virtual ma-
chine before and tearing it down after use can take a long time,
inducing a significant latency for the user. Further, a cloudlet user
must trust the on-site computers with his virtual machine.

7. DISCUSSION AND CONCLUSIONS
A primary assumption of the display cloud model is that a user

can only trust his own devices and not the display computers, and
vice versa. This distinguishes the display cloud model from ubiq-
uitous computing approaches where the environment detects the
user and provides interaction mechanisms for him, and sometimes
allows the user to upload code to customize the environment. Con-
sequently, we believe that the display cloud model is well suited for
public displays with many mobile users.

To achieve good scaling with the number of users, the display
cloud model has no management and control bindings between dif-
ferent users’ cloud displays. While visuals from different users can
share physical displays and networks, no coordination between vi-
suals from different users is done. Implications of this are that the
display cloud model has no obvious limits to growth unless too
many users end up using the same networks and the same displays.
In the first case this can be solved by increasing the network band-
width. In the second case we observe that it is highly unlikely that
very many users will share the same displays because only a hand-
ful of users will fit physically around a display, limiting naturally
how many visuals it will be asked to display. Even if very many
users could use the same few displays simultaneously, they have no
reason to do so because the visuals will conceal each other.

For individual users, the display cloud model relies on a strong
centralization handled by a feature rich mobile device controlled
and trusted by the user. The mobile device takes care of all interac-
tion between the user and the remote computers, between the user
and the displays, and frequently, say, 30 times a second, controls
the interaction between remote computers and displays. Interest-
ingly, despite all the responsibilities centralized to the mobile de-
vice, it is not a bottleneck. This is because the centralization is per
user only.



Acknowledgements
Part of this work has been supported by the Norwegian Research
Council, project No. 155550/420 - Display Wall with Compute
Cluster, and Tromsø Forskningsstiftelse, project No. A2093 - Dis-
play Wall.

The authors would like to thank the Administrative and Techni-
cal Staff at the Department of Computer Science for valuable help.

8. REFERENCES
[1] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M.

Inkpen, and M. Czerwinski. Impromptu: a new interaction
framework for supporting collaboration in multiple display
environments and its field evaluation for co-located software
development. In Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
CHI ’08, pages 939–948, New York, NY, USA, 2008. ACM.

[2] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt. Open
display networks: A communications medium for the 21st
century. Computer, 45(5):58 –64, May 2012.

[3] A. Friday, N. Davies, and C. Efstratiou. Reflections on
long-term experiments with public displays. Computer,
45(5):34 –41, May 2012.

[4] S. Izadi, H. Brignull, T. Rodden, Y. Rogers, and
M. Underwood. Dynamo: a public interactive surface
supporting the cooperative sharing and exchange of media.
In Proceedings of the 16th annual ACM symposium on User
interface software and technology, UIST ’03, pages
159–168, New York, NY, USA, 2003. ACM.

[5] M. Jang and K. Schwan. Stratus: Assembling virtual
platforms from device clouds. In Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing,
CLOUD ’11, pages 476–483, Washington, DC, USA, 2011.
IEEE Computer Society.

[6] H. Jiang, D. Wigdor, C. Forlines, and C. Shen. System
design for the wespace: Linking personal devices to a
table-centered multi-user, multi-surface environment. In
Horizontal Interactive Human Computer Systems, 2008.
TABLETOP 2008. 3rd IEEE International Workshop on,
pages 97 –104, oct. 2008.

[7] A. M. Lai and J. Nieh. On the performance of wide-area
thin-client computing. ACM Trans. Comput. Syst.,
24:175–209, May 2006.

[8] J. Leigh, L. Renambot, A. Johnson, R. Jagodic, H. Hur,
E. Hofer, and D. Lee. Scalable Adaptive Graphics
middleware for visualization streaming and collaboration in
ultra resolution display environments. Ultrascale
Visualization, 2008. UltraVis 2008. Workshop on, pages 47 –
54, Nov 2008.

[9] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook,
S. Damianakis, G. Essl, A. Finkelstein, T. Funkhouser,
T. Housel, A. Klein, Z. Liu, E. Praun, R. Samanta, B. Shedd,
J. P. Singh, G. Tzanetakis, and J. Zheng. Building and Using
A Scalable Display Wall System. IEEE Comput. Graph.
Appl., 20(4):29–37, 2000.

[10] Y. Liu, J. M. Bjørndalen, and O. J. Anshus. Using
multi-threading and server update pushing to improve the
performance of vnc for a wall-sized tiled display wall. In
Scalable Information Systems, volume 18 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 306–321. Springer
Berlin Heidelberg, 2009.

[11] K. Lyons, T. Pering, B. Rosario, S. Sud, and R. Want.
Multi-display composition: Supporting display sharing for
collocated mobile devices. Human-Computer Interaction –
INTERACT 2009, 5726/2009:758–771, 2009.

[12] K. E. Martin, D. H. Dawes, and R. E. Faith. Distributed
Multihead X design. Retrieved October 11, 2012 from:
http://dmx.sourceforge.net/dmx.html, 2003.

[13] D. Molyneaux and G. Kortuem. Ubiquitous Displays in
dynamic environments: Issues and Opportunities.
Proceedings of UbiComp, Jan 2004.

[14] T. Ojala, V. Kostakos, H. Kukka, T. Heikkinen, T. Linden,
M. Jurmu, S. Hosio, F. Kruger, and D. Zanni. Multipurpose
interactive public displays in the wild: Three years later.
Computer, 45(5):42 –49, May 2012.

[15] M. Raghunath, N. Ravi, M.-C. Rosu, and C. Narayanaswami.
Inverted browser: a novel approach towards display
symbiosis. In Pervasive Computing and Communications,
2006. PerCom 2006. Fourth Annual IEEE International
Conference on, pages 6 pp. –76, march 2006.

[16] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper.
Virtual network computing. Internet Computing, IEEE,
2(1):33 –38, jan/feb 1998.

[17] S. Sakurai, Y. Itoh, Y. Kitamura, M. Nacenta, T. Yamaguchi,
S. Subramanian, and F. Kishino. A Middleware for Seamless
Use of Multiple Displays. In Interactive Systems. Design,
Specification, and Verification, volume 5136 of Lecture
Notes in Computer Science, pages 252–266. Springer Berlin
/ Heidelberg, 2008.

[18] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. Pervasive
Computing, IEEE, 8(4):14 –23, oct.-dec. 2009.

[19] D. Stødle, J. M. Bjørndalen, and O. J. Anshus.
De-Centralizing the VNC Model for Improved Performance
on Wall-Sized, High-Resolution Tiled Displays. Proceedings
of Norsk Informatikkonferanse, pages 53–64, 2007.

[20] G. Wallace and K. Li. Virtually shared displays and user
input devices. In 2007 USENIX Annual Technical
Conference on Proceedings of the USENIX Annual Technical
Conference, ATC’07, pages 31:1–31:6, Berkeley, CA, USA,
2007. USENIX Association.

[21] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and
J. Light. The personal server: Changing the way we think
about ubiquitous computing. pages 194–209, 2002.

[22] R. Want, T. Pering, S. Sud, and B. Rosario. Dynamic
composable computing. HotMobile ’08: Proceedings of the
9th workshop on Mobile computing systems and
applications, Feb 2008.


