
Mobifetch: An Execution-time Prefetching Technique to
Expedite Application Launch in Mobile Devices

Junhee Ryu, Kwangjin Ko, Heonshik Shin
Seoul National University

{jhryu, kjko, shinhs}@cslab.snu.ac.kr

Kyungtae Kang
Hanyang University

ktkang@hanyang.ac.kr

ABSTRACT

This paper presents a novel prefetching technique to reduce
application launch time for mobile devices. The proposed method
traces disk access accurately during an application launch and
prefetches them in efficient way at its subsequent launches. The
key idea is to parallelize the use of processor and flash disk while
exploiting multi-core and internal parallelism on flash disk. The
proposed prefetcher implemented on a mobile Meego platform
has achieved a 28.1% reduction of application launch time with 6
popular applications.

1. INTRODUCTION
Application launch time is an important index to benchmark the
user-perceived system performance on mobile devices [1].
Emergence of flash-based disk has shown a great potential to
make application launch rather more processor-intensive. We
observed, however, that significant portion of application launch
time is still related to disk time which includes I/O stack
processing, context switch overhead, and low-level disk I/O
latency. We also found that hardware resources are used in
serialized manner during application launch although the process
can benefit by exploiting a parallelism between processors and
disk drives [1]. To tackle the inefficient use of system resources,
we propose a new prefetching technique called Mobifetch to
expedite application launch by exploiting multi-core, internal
parallelism on flash disk, and concurrent use of the processor and
the disk in the Linux environment.

2. MOBIFETCH DESIGN AND IMPLEMTATION
Disk I/O Tracing: The accuracy of disk I/O tracing critically

affects the achievable performance gain on prefetching techniques.
To figure out exact set of accessed blocks during an application
launch, we first invalidate disk cache and monitor generated I/O
requests due to disk cache miss in buffer cache and page cache.
We also perform filesystem-level block dependency check
because Linux kernel does not perfectly invalidate slab caches.

Prefetch Scheduler: Collected launch-related blocks are
scheduled to optimize application launch time by utilizing system
resources in parallel. We use infill merge [2], which merges I/O
requests with small unneeded blocks between them, to exploit
internal parallelism on flash disk. In addition, we consider the
order of requests for the blocks to be merged. This is because we
need to avoid the merge of blocks located at a large distance,
which is deemed inefficient for overlapping processor execution
with disk prefetching. We use I/O request distance and infill size
thresholds to limit the distance between mergeable blocks and the
size of extra reading blocks.

Prefetch Thread: Launch-related blocks of applications are
monitored, scheduled, and stored to .pf file at their first launch.
Optimized sequence is prefetched by a prefetcher thread using the
stored .pf file at subsequent launches of each application.

3. EXPERIMENTAL RESULTS
We conducted an experiment on a tablet PC equipped with an
Intel dual-core atom 1.86 GHz CPU and a Sandisk 64 GB SSD
(SDSA3ED, this model does not support command queuing),
where we installed a Meego 1.2 with Mobifetch-integrated Linux
kernel 3.5.0. We measured the application launch time in both
cold start scenario and warm start scenario, where the main
memory disk cache has stored none and all of the launch data,
respectively. We also measured application launch time in a cold
start with Mobifetch. Figure 1 shows that the average launch time
reduction of Mobifetch is 28.1% over the cold start scenario
without infill merge. In the figure, we can also see comparable
improvements in the event of distance-based infill merge.

4. ONGOING WORK
We are currently porting Mobifetch to Linux-based Android and
Ubuntu-ARM platforms to evaluate our scheme on widely-used
smartphone platforms. We also plan to study fast prefetching
methods by guaranteeing the number (or the size) of queued disk
requests when the flash disk supports command queuing features,
which the next standard of eMMC is expected to support.

5. REFERENCES
[1] Y. Joo, J. Ryu, S. Park, and K. G. Shin, FAST: Quick

application launch on solid-state drives, In Proceedings of
the 9th USENIX FAST, San Jose, California, USA, 2011.

[2] S. VanDeBogart, C. Frost, and E. Kohler, Reducing seek
overhead with application-directed prefetching, In
Proceedings of the USENIX ATC, San Diego, California,
USA, 2009.

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No.
2012R1A1A2044653)

Figure 1. Results of application launch time
measurement (normalized to cold start time).

