
QuiltView: a Crowd-Sourced Video Response System

Zhuo Chen, Wenlu Hu, Kiryong Ha, Jan Harkes, Benjamin Gilbert,
Jason Hong, Asim Smailagic, Dan Siewiorek, and Mahadev Satyanarayanan

School of Computer Science, Carnegie Mellon University

ABSTRACT
Effortless one-touch capture of video is a unique capability
of wearable devices such as Google Glass. We use this ca-
pability to create a new type of crowd-sourced system in
which users receive queries relevant to their current loca-
tion and opt-in preferences. In response, they can send back
live video snippets of their surroundings. A system of result
caching, geolocation and query similarity detection shields
users from being overwhelmed by a flood of queries.

1. INTRODUCTION
The emergence of wearable devices such as Google Glass

has ignited a debate about a “killer app” for them. Every-
one wants one of these technically impressive and aestheti-
cally elegant devices. However, their functionality today is
roughly that of a smartphone. A user can perform voice-
activated searches, place and receive phone calls, get direc-
tions, and take photographs and videos. Beyond novelty and
coolness, however, their true value proposition is not clear.
What payoff can we achieve from widespread deployment of
Glass-like devices? That is the question we explore here.

We describe a crowd-sourced system called QuiltView that
leverages the ability of Glass-like devices to provide near-
effortless capture of first-person viewpoint video. Recording
a video clip merely involves touching the shank of your Glass
device. The extreme simplicity of video capture can be used
to create a new kind of near-real-time social network. In this
social network, users can pose brief queries to other users in a
specific geographic area and receive prompt video responses.
The richness of video content provides much detail and con-
text to the person posing the query, while consuming little
attention from those who respond. The QuiltView archi-
tecture incorporates result caching, geolocation and query
similarity detection to shield users from being overwhelmed
by a flood of queries.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request per-
missions from Permissions@acm.org.

HotMobile ’14, February 26 - 27 2014, Santa Barbara, CA, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2742-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2565585.2565589

2. MICRO-INTERACTIONS IN GLASS
Our work builds on a key design guideline for Glass ap-

plication developers: they are encouraged to structure their
applications in terms of micro-interactions. These are very
brief episodes of display or audio stimulus from the sys-
tem, followed by a quick and unobtrusive user response. As
Lukowicz explains [9]:

The basic concept underlying the quick micro-interactions
idea is the “two seconds rule.” It says that anything that takes
you more than two seconds or longer to accomplish, needs a
good reason to be done. Anything that takes significantly less
you will do without a second thought. Checking something on
a smart phone or using a smart phone to take a picture takes
much longer than two seconds. Google Glass on the other hand
aims to allow you to do this in much shorter time.

Extensive interaction with Glass users is strongly discour-
aged because it distracts them from their situated contexts.
Since user attention is at a premium in situated contexts,
micro-interactions aim to be minimally disruptive. In the
“snap, pause, tangent, extended” taxonomy of user distrac-
tions developed by Anhalt et al [1], a micro-interaction cor-
responds to a snap. This is the briefest of distractions, and
a user can perform a snap activity without the cognitive
inefficiency of a mental context swap.

This line of reasoning leads to the question: “What high-
value micro-interactions can one have with a Glass user?” In
other words, what are examples of high-value outputs that a
Glass user can produce at low cost in terms of user distrac-
tion? One possible candidate is video capture in response
to a brief query. A short query that fits within the small
Glass display (say, 50 characters or less, which is about a
third of Twitter’s 140-character limit) can be understood in
a single glance. With just a touch, the user can capture a
10-second video segment as a response to the query. Buried
in that video is a wealth of information that the user does
not have to interpret, convert to text, or explain. About the
only investment of attention is to ensure that the scene be-
ing captured is relevant to the query. Transmitting the video
back is, of course, much more expensive in terms of band-
width and energy than returning text or even audio. How-
ever, when user attention is the most critical resource, the
near-effortless capture and return of video is a better strat-
egy. A good example of the kind of video we might expect in
response to a query such as “What’s exciting at the show?”
was recently provided by designer Diane von Furstenberg.
She wore Google Glass to capture and share her experience
at the Spring 2013 Fashion Show in New York [3].

Without consuming any additional user attention, video

YouTube URL Location Owner Time other

fields
Query

QuiltView Catalog and Result Cache

metropolitan
area network

Internet responding

users

video
meta-data

Query from

Google Maps

Figure 1: The Cloud-based QuiltView Architecture with YouTube and Google Maps Integration

responses could be accompanied by sensor information that
provides context. For example, geolocation, orientation and
accelerometer readings could be provided today. In the fu-
ture, biometric sensor information such as heart-rate and
gaze tracking could be included. In other words, at the
user’s discretion and in response to a specific query, a Glass
user can easily respond with a wealth of relevant informa-
tion. The one-touch effortlessness of this micro-interaction
is unique to Glass-like wearable devices.

3. SIMPLE QUERIES, DEEP ANSWERS
“If a picture is worth a thousand words, then a video is worth

a million”according to two YouTube guest bloggers from the
marketing and advertising industry [12]. Many subtleties
that would be lost in a verbal response are fully communi-
cated in a video. Receiving a video response is like “being
there” — the person asking the query is effectively trans-
ported to the scene of the response. He can use his own
taste, judgement and knowledge rather than relying on those
of an unknown responder in crowd-sourcing.

Imagine a future in which Glass devices become as com-
mon as smartphones. Glass users may be spread over a large
area such as a city or a county. Consider a short query with
deep semantics such as “How exciting is the party?” or “Is
the beach crowded?” In response to such a query, it is faster
and simpler for a number of Glass wearers to independently
return brief video segments rather than to give detailed ver-
bal responses. In any case, their concept of “exciting” or
whether a beach is crowded may differ from that of the per-
son who posed the query. With video responses, that person
can judge for himself whether the party is exciting enough
to attend, or whether the beach is too crowded. In other
words, delivering raw data rather than interpreted data is
preferable. This insight lies at the heart of QuiltView.

How could QuiltView make a difference in the real world?
The vignettes below describe some potential use cases:

• Traffic Emergency: All of a sudden, four lanes of
an interstate highway come to a complete halt. The
cause of the stoppage is not visible on traffic cameras.
Emergency response personnel do not know what to
send in response, and where. Dispatching a police of-
ficer to do reconnaissance would not help since the
officer would also be blocked by the traffic jam. Fortu-
nately many drivers and passengers in the other direc-
tion of the highway are wearing Glass. As they pass
the scene of the blockage, they receive a QuiltView

query from the police. The videos sent in response
soon help the emergency response center decide how
best to respond.

• Missing Child (Amber Alert): A parent sees her
child being grabbed and forced into a car, but is not
near enough to stop the abduction. The police issues
an Amber Alert with a description of the child and
the car. This QuiltView query is received by all Glass
wearers in the vicinity of the abduction. Many video
responses are immediately received by the police, and
they are soon able to apprehend the suspect and rescue
the child.

• Real-time Queue View: Trying to decide whether
to have dinner before a movie or after, a student sends
a QuiltView query to see how busy nearby restaurants
and movie theaters are. The video responses show the
lines at the theaters, whether friends or family are al-
ready in line (and could purchase his ticket), and how
crowded the restaurant lobbies are. Similar real-time
information could be obtained about lines at flu shot
clinics, sporting events, and crowds in buses.

• Free Food Finder: Late one afternoon, a hungry
student wonders whether free cookies or donuts might
be available nearby. He submits a QuiltView query
about free food. Video responses from Glass wearers
at different events on campus show not only how much
food is left, but also the type of food and how many
people are still waiting in line for what is left.

• Scavenger Hunt: A new Glass-based scavenger
hunt game awards points for videos of specified items
or events. One game specifies crowded restaurants,
roadside food stalls, and particular types of cars. Be-
cause of the incentives, a rich collection of unique videos
is captured over time and archived.

• Time Machine: A van with damage to its right
front fender was involved in a robbery. The car is
found abandoned and later discovered to be stolen.
The police would like to recreate the crime commenc-
ing with the original theft of the auto. By applying
image matching software on the QuiltView cache of
videos from unrelated queries in the neighborhood of
the crime, the police are able to identify the vehicle
at specific times and places. From this evidence, the
criminals are apprehended and later convicted.

4. SYSTEM ARCHITECTURE
QuiltView is a cloud-based service that is built using off-

the-shelf Internet technology. Figure 1 shows the QuiltView
architecture. At the heart of this architecture is a global cat-
alog of users and queries, implemented with a SQL database.
It includes details of all the queries that have been posed:
their content, who posed the query, when, for what geo-
graphic target area, and so on. The catalog also includes
details of all the responses that have been received: from
whom, when, in response to what query, from what loca-
tion, and other meta-data. Most importantly, it contains
the YouTube link of the response. Both the uploading and
viewing of videos are done using standard YouTube mecha-
nisms that are wrapped inside QuiltView query and response
software. The catalog only holds links, not video content.

The QuiltView catalog also includes details of users and
their preferences regarding their willingness to respond to
queries. These preferences may include specific topics, spe-
cific users or members of specific social network groups who
are posing a query, the acceptable volume of queries dur-
ing some period of time (e.g., queries per day or queries per
hour), and the acceptable locations at which queries may
be presented. A user can change these preferences at any
time, with immediate effect. Any accounting information
necessary to support the incentive model for crowd-sourcing
will also be maintained in the catalog. For example, if a
financial model similar to that of Amazon Mechanical Turk
(AMT) is used, the accounting information would include
the financial credits accumulated by a user as well as the
financial reward offered for each query. In such a model, the
reward would be displayed with the query so that a user can
decide whether it is worth his while to respond.

The QuiltView catalog is used as a result cache that short-
circuits query processing. During events of high public inter-
est (such as the manhunt for the Boston marathon terrorists
in 2013) there may be a flood of nearly identical requests for
roughly the same information. If a query is deemed to be
“close” to a recently-answered one and “recent enough,” the
cached results for the earlier query are returned. The user
posing the query is first shown the earlier query, meta-data
about the query, and the number of available responses. He
has the choice of accepting the cached results or insisting
that QuiltView obtain fresh results for his query. Result
caching greatly improves the speed of responses from the
viewpoint of the user posing the query. It also reduces the
burden of repeated queries on Glass users. How best to
define “close” and “recent enough” are important questions
that we discuss later in the paper.

Queries are posed using a web interface to Google Maps.
Just as one can perform “Search nearby” today in Google
Maps, a user zooms into a geographic region and then poses
a query such as “Have you seen my dog?” along with a
thumbnail image of his pet. The zoomed-in region on the
map implicitly defines the scope of the query. Within this
geolocated scope, a subset of the Glass users who have opted-
in to receive QuiltView queries on a relevant topic (such as
“pets” or “community help”) receive the query. How the
subset of users is chosen is an important QuiltView design
feature. The goal is to respect user preferences rigorously,
and within that constraint to spread the burden randomly
across users. The size of the subset has to be determined
based on an estimate of how many users will respond to the
query. For example, if three responses are needed and ex-

perience has shown that a 60% response rate is typical for
the parameters of the query, QuiltView has to present the
query to five users. While this simple approach is a good
starting point, dynamic adaptation of estimates based on
actual experience is possible and more sophisticated user se-
lection mechanisms (such as those based on user reputation)
can be envisioned for the future.

Some constraints on queries are necessary. As mentioned
earlier, the length of queries is limited to about a third of
the Twitter limit for easy display in Glass. There is also a
limit on the size of the zoomed-in region on a map — oth-
erwise a single query could be of unacceptably large scope,
such as covering the whole planet. When a user receives a
query, he can decide to respond with a brief video clip of an
appropriate part of the scene around him. Each video clip
is uploaded into YouTube, and its link is displayed in the
list of responses to the query. Meta-data about this video
clip, matched to the original query, is entered into the global
QuiltView catalog.

5. PROTOTYPE IMPLEMENTATION
We implemented a complete prototype of the QuiltView

architecture shown in Figure 1. The prototype incorporates
all the steps mentioned in Section 4: posing a query using
Google Maps, checking for cache hits in the global catalog,
sending a notification message to Glass clients, one-touch
recording and uploading of video responses to YouTube,
and returning responses to the user who posed the query.
We describe the client and server implementation in Sec-
tions 5.1 and 5.2 below. The query interface and work-
flow are described in Section 5.3. Our implementation of
result caching, including similarity detection in queries, is
described in Section 5.4. Load balancing across users is de-
scribed in Section 5.5. Finally, Section 5.6 describes how
we combine synthetic users with real Glass users to explore
scalability issues.

5.1 Glass Client
Our approach to implementing the client side of QuiltView

is strongly shaped by our goal of one-touch response. The
easiest approach would have been to use the Mirror API, as
recommended by Google [7]. By using this API, a QuiltView
server can easily call appropriate RESTful endpoints on a
Mirror server in order to communicate with a Glass device.
Although this approach can simplify our implementation,
the limitations of the Mirror API compromise our one-touch
goal. Therefore, the Glass client in our prototype is imple-
mented with the Glass Development Kit (GDK) [5], which
provides much richer functionality than the Mirror API, and
supports creation of native Glass clients.

Current software support for Glass also limits the energy
efficiency of our QuiltView client. Since we expect requests
to be relatively rare (a few an hour, perhaps, for a typ-
ical user), a push-driven notification mechanism based in
the cloud would be more energy-efficient than polling by
the client. Unfortunately, Google Cloud Messaging (GCM),
which is the standard service to push updates from the cloud
to Android devices [8] is not available yet for Glass. In our
current implementation, the client has to poll the QuiltView
server periodically to check for new queries. We plan to
switch to GCM-based notification as soon as possible.

The QuiltView client software runs as a background ser-
vice on a Glass device. Figure 2 shows two examples of what

(a) Simple Text Query (b) Query with an Image

These illustrations conform to Google’s guidelines for Glassware screenshots [6]: in each case, the small box on the top right is a
screenshot of the Glass display, while the background is the real-world scene visible to the user. The figure on the left corresponds
to a simple text query, while that on the right corresponds to a query accompanied by an image .

Figure 2: What a QuiltView User Sees When Receiving a Query

a user sees when he receives a query. The example on the
left is a simple text query, while that on the right includes
an image. The query message remains on the Glass screen
for about fifteen seconds. While the query is displayed, the
user can briefly touch the side of the Glass device to record
and upload a ten-second video response. If the user does not
wish to respond to the query, he can simply ignore it.

5.2 QuiltView Service
QuiltView is implemented as a web-based service in a sin-

gle virtual machine at Amazon EC2 East. We expect this
to provide adequate scalability for the near term. Standard
load balancing and scaling mechanisms for web-based ser-
vices can be used in the future to cope with increased load.
In addition, since users and queries both exhibit significant
spatial locality, standard distributed systems techniques can
be used for partitioning and replicating the QuiltView ser-
vice across multiple Amazon data centers.

The QuiltView service is available at https://quiltview.
opencloudlet.org. Glass clients use SSL to communicate
with this service. To distinguish between Glass devices, we
use a device serial ID provided by the Android SDK. Our
current implementation assumes that each Glass device is
unique to a specific user — a reasonable assumption for
such an intensely personal device. The device-user bind-
ing is established when a user registers with the QuiltView
service. Only registered users can pose queries and pro-
vide responses. After registration, users authenticate via
Mozilla Persona [10]. This decentralized authentication sys-
tem, based on the BrowserID protocol, allows a user to verify
his/her identity via a participating email provider’s OpenID
or OAuth gateway. No new password creation is involved.

The QuiltView server is a Django application that pro-
vides a web front-end to QuiltView users. The back-end is
a MySQL database that stores the global catalog shown in
Figure 1. The tables of this database contain information
such as user registration details, user preferences, YouTube
video links, query history, response history, query rewards
and credits, and per-user timing and response quality infor-
mation (for future user-reputation extensions to QuiltView).

5.3 Query Workflow
The QuiltView user interface is in two parts. First, the

user defines the geographic scope of a query by zooming
into an appropriate region of Google Maps as shown in Fig-
ure 3(a). The zoom level has to be 15 or deeper, corre-
sponding to a roughly 3-mile by 2-mile bounding box on a
typical desktop monitor. A location share link on this map
encodes the latitudes and longitudes of its bounding box, as

Queries Matched Results
Is there a thunderstorm? What is the weather?

Is it raining?
Is it cold outside?

How is the thesis defense? Are the professor’s ques-
tions hard?

(a) Examples of True Positives

Queries Wrongly Matched Results
Is it sunny? What is happening in In-

dia?
Is the new year celebration
fun?

Is the Mardi Gras exciting?

(b) Examples of False Positives

Queries Missed Results
How is the party? Is anyone drunk?

(c) Examples of False Negatives

Table 1: Approximate Query Matching Algorithm

well as the zoom level and other relevant details. The user
copies and pastes this link into the query interface shown in
Figure 3(b). He then types the text of his query, uploads
any associated image (such as a picture of a missing child
or pet), and adds final details such as reward offered and
desired timeliness of responses.

Once the query is submitted, the QuiltView server first
checks to see if there are any relevant cached results. This
involves a query similarity check (described in Section 5.4)
and a timeliness check based on requester’s preference of ac-
cepted staleness (Figure 3(b)) to eliminate obsolete cache
hits. The query content of relevant hits are presented to the
user, along with the YouTube URL of responses for each.
The user can decide whether one of these queries is close
enough to his query, and whether any of the returned re-
sponses are adequate. In that case, the query terminates
without contacting any Glass users. Otherwise, the user can
force delivery of the query to Glass users, and they can op-
tionally respond as described in Section 5.1. How the right
set of users is selected will be described in 5.5.

5.4 Query Similarity
For result caching to be effective, it is important to be

able to detect queries that mean roughly the same thing.
Otherwise there will be very few hits in the cache because
two users are unlikely to phrase the same query using exactly
the same text string. Hence, “similar” in this context means
semantically close, not literally identical.

(a) Location URL from Google Maps (b) Querying Interface

Figure 3: Composing a QuiltView Query

Query similarity detection is a very deep and open-ended
problem, with roots in natural language processing, machine
learning, and artificial intelligence. As a proof of concept,
our prototype builds on an open source framework for un-
supervised semantic modeling called Gensim [13] and uses
the LDA (Latent Dirichlet Allocation) model for topical in-
ference. Using a text corpus that is about 9 GB in size
when compressed and encodes the entire English edition of
Wikipedia, QuiltView gives an acceptable quality of similar-
ity detection at reasonable speed.

Table 1(a) gives some examples of cache hits that are true
positives; that is, many users would accept cached video re-
sponses to the queries on the right as acceptable results for
the query on the left. Table 1(b) gives some examples of
false positives; that is, QuiltView indicates similarity but
is wrong. Fortunately, the query workflow ensures that a
false positive is self-correcting. The queries corresponding
to the erroneous hits are presented to the user, who imme-
diately dismisses them and insists on QuiltView obtaining
fresh results. Erroneous hits never lead to insidious use of
wrong results. Table 1(c) gives some examples of false neg-
atives; that is, QuiltView indicates no hits but the cache
contains some matching queries. This case only represents a
lost opportunity; QuiltView is unable to take advantage of
the cached results and unnecessarily contacts users.

5.5 User Load Balancing
In distributed systems, “load balancing” typically refers

to the utilization of server machines. In QuiltView, how-
ever, it refers to the cognitive burden placed on users who
receive queries. Even if a user chooses not to respond, the
distraction caused by receiving a query can be significant.

User preferences about receiving queries may vary consid-
erably, depending on the individual, time, location, query
topic, and reward offered. For example, a user might not
want to receive any query at specific locations such as home
or library, or anywhere after 9pm. QuiltView provides for
flexible expression of such user preferences using a JSON
specification. A user can specify a maximum number of
queries that she/he is willing to receive for a given time
(e.g., 5 queries per day). To meet this preference, the sys-
tem keeps track of the query sent time and responded time
for each user. When a new query is posed, QuiltView first
identifies relevant Glass clients based on their locations and
the geographic scope of the query. Then, it factors in their
preferences to obtain a smaller set of eligible users. From
this subset of eligible users, QuiltView randomly chooses
the desired number of users and delivers the query to them.

Figure 4: Synthetic and Real Glass Users

5.6 Synthetic Glass Users
QuiltView is designed for a future when there will be hun-

dreds or thousands of Glass users in a city-size area. At
present, only very limited numbers of Glass devices are avail-
able. To accelerate our experience with QuiltView mecha-
nisms under stress, we have developed Python software that
emulates a human Glass user. A QuiltView server cannot
tell whether it is interacting with a real user or a synthetic
user — the network protocol behavior of the two are iden-
tical. To return a video in response to a query, a synthetic
user randomly chooses one from a set of .mp4 files. We pro-
vide a tool to create and randomly distribute a specified
number of synthetic users over a geographic area specified
by a location link from Google Maps. Just like real users,
these synthetic users connect with the QuiltView service and
respond to queries. They do not, however, pose any queries.

Figure 4 shows 50 synthetic users (red markers) along with
2 real Glass users (blue markers). The shaded area identi-
fies the set of users who are within the geographic scope
of a query. Within this area, QuiltView delivers the query
to a subset of users (real or synthetic) as described in Sec-
tion 5.5. Synthetic users randomly decide whether to re-
spond, and their responses are combined with those from
live users. At present, synthetic users do not move; a future
extension would be to include a mobility model.

Using synthetic users will enable us to study the scala-
bility of the QuiltView infrastructure without waiting for
the widespread deployment of Glass-like devices. It will also
help us to create reproducible benchmarks that can help us
compare alternative design choices and to evolve the imple-
mentation for improved scalability. Such experimentation
can prepare the way for large-scale field studies with live
users, which will be the ultimate test of QuiltView.

6. RELATED WORK
QuiltView is unique in its use of video for crowd-sourced

responses to queries. As discussed in Section 3, many sub-
tleties that would be lost in a verbal response are fully com-
municated in a video. At the same time, a video response
is nearly effortless for a Glass user. Through a system of
result caching, geolocation and query similarity detection,
QuiltView improves scalability and shields users from being
overwhelmed by a flood of queries. We are not aware of any
other system with this unique combination of attributes.

Closest in spirit to QuiltView is a now-defunct system
called Aardvark [14] that connects users to a social net-
work of friends and family who can respond to questions.
Queries and responses are both in text, with no use of im-
ages or video. As in QuiltView, MicroBlog [4] users receive
queries relevant to their location. However, the geo-tagged
blogs they post in response are not micro-interactions. Fur-
ther, the long response times for posting a blog entry sug-
gest that queries are less likely to receive a near-real-time
reply. QuiltView’s per-query control over result freshness
bears resemblance to the consistency model supported by
LazyBase [2]. The query-driven and crowd-sourcing aspects
of QuiltView bear resemblance to mobile micro-task ser-
vices such as Field Agent, GigWalk, NeighborFavor, and
TaskRabbit that have been studied by Musthag et al [11].

7. CLOSING THOUGHTS
QuiltView represents a new kind of crowd-sourcing sys-

tem in which users return raw video as their response to a
specific query. Such a system could, in principle, be built
using smartphones or other mobile devices. However, the
QuiltView workflow is designed to take advantage of the spe-
cific strengths of a Glass device, namely low user distraction
and low cognitive load for this style of interaction.

The simplicity of recording and uploading a video in Quilt-
View is likely to raise privacy concerns. In our design, we
have followed Google’s guideline to have the Glass screen
turned on while recording, so that people being recorded
are aware. The procedure of touching the Glass device be-
fore recording is explicit confirmation from the Glass wearer
that he is willing to share the current scene. In the future,
Glass users may, based on their preferences, share video clips
only with selected friends as in Google+ or Facebook. Auto-
matic denaturing, as described in GigaSight [15], can also be
helpful. This mechanism removes sensitive parts of a scene,
such as human faces, before uploading.

We have built a working prototype of QuiltView, as de-
scribed in Section 5. Our next step (subject to availability
of sufficient number of Glass devices for real users) is to val-
idate our implementation in live use. We envision a combi-
nation of field studies and lab-based experiments. Through
this empirical process we hope to answer many questions.

For example, what are appropriate incentive models for
participation in QuiltView? How annoying and distracting
do users find queries that appear in their Glass displays?
Can we use audio cues to minimize distraction by picking
an optimal moment to present a query to a user? How con-
strained do queries have to be for easy response and scala-
bility? What type of queries do people like to post in the
real world? How close to real-time can we make the query-
response loop? How rich a spectrum of opt-in preferences do
we need in practice? How effective is result caching? What

are typical time scales over which cached results are useful?
How energy efficient is QuiltView?

These are, of course, only a subset of the many questions
that come to mind about QuiltView. As is typical in ex-
perimental research, the early results and insights from our
system will serve as a guide to further exploration. While we
may not be able to answer all these questions definitively, we
expect to gain valuable insights into this novel use of Glass
and create a disruptive technology for mobile computing.

Acknowledgements
This research was supported by the National Science Foundation (NSF)
under grant number IIS-1065336, by an Intel Science and Technology
Center grant, by DARPA Contract No. FA8650-11-C-7190, and by
the Department of Defense (DoD) under Contract No. FA8721-05-C-
0003 for the operation of the Software Engineering Institute (SEI),
a federally funded research and development center. This material
has been approved for public release and unlimited distribution (DM-
0000276). Additional support was provided by IBM, Google, Bosch,
and Vodafone. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the authors and should
not be attributed to their employers or funding sources.

8. REFERENCES
[1] J. Anhalt, A. Smailagic, D. Siewiorek, F. Gemperle, D. Salber,

S. Weber, J. Beck, and J. Jennings. Toward Context-Aware
Computing: Experiences and Lessons. IEEE Intelligent
Systems, 16(3), May/June 2001.

[2] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III, C. A. Soules,
and A. Veitch. LazyBase: Trading Freshness for Performance in
a Scalable Database. In Proceedings of the 7th ACM European
Conference on Computer Systems, Bern, Switzerland, 2012.

[3] Ellie Krupnick. Diane Von Furstenberg’s Google Glasses Bring
Geek-Chic to Fashion Week. The Huffington Post, September
2012. http://www.huffingtonpost.com/2012/09/10/
diane-von-furstenberg-google-glasses-fashion-week_n_
1870028.html.

[4] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.
Micro-Blog: sharing and querying content through mobile
phones and social participation. In Proceedings of the 6th
international conference on Mobile systems, applications, and
services, New York, USA, 2008.

[5] Google. Glass Development Kit.
https://developers.google.com/glass/gdk, 2013.

[6] Google. Glassware Launch Checklist.
https://developers.google.com/glass/distributing/checklist,
2013.

[7] Google. The Google Mirror API.
https://developers.google.com/glass/, 2013.

[8] Google GCM.
http://developer.android.com/google/gcm/index.html, 2013.

[9] P. Lukowicz. Head-Mounted Displays: From Cyborgs to Google
Glass. Wearable Technologies, May 2013.
http://www.wearable-technologies.com/2013/05/
head-mounted-displays-from-cyborgs-to-google-glass/.

[10] Mozilla. Introducing BrowserID: A better way to sign in.
http://www.mozilla.org/en-US/persona/, October 2013.

[11] M. Musthag and D. Ganesan. Labor Dynamics in a Mobile
Micro-Task Market. In Proc. of CHI 2013, Paris, France, May
2013.

[12] T. Olson and J. Loquist. If a picture is worth a thousand
words, then a video is worth a million.
http://youtube-global.blogspot.com/2010/10/
if-picture-is-worth-thousand-words-then.html, October 2010.

[13] R. Řeh̊uřek and P. Sojka. Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks,
Valletta, Malta, May 2010.

[14] M. G. Siegel. The Killings Continue at Google: Aardvark Put
Down. TechCrunch, September 2011.
http://techcrunch.com/2011/09/02/google-kills-aardvark/.

[15] Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K.,
Satyanarayanan, M. Scalable Crowd-Sourcing of Video from
Mobile Devices. In Proceedings of the 11th International
Conference on Mobile Systems, Applications, and Services
(MobiSys 2013), Taipei, Taiwan, June 2013.

