Extending SDN for mobile device

Jeongkeun Lee,! Mostafa Uddin,2 Jean Tourrilhes,! Souvik Sen,! Sujata Banerjee,!
Manfred Arndt,®> Tamer Nadeem?

IHP Labs, 20Old Dominion University, 3HP Networking

1. INTRODUCTION

Large number of mobile devices use numerous apps that ac-
cess internet through wireless. With significant amount of traffic
growth and variability, it is necessary to have greater visibility and
control over the traffic generated from the client devices, such that
we can provide better performance guarantees to multiple types
of users on a shared wireless infrastructure. In a wired infras-
tructure, network virtualization is a means to deliver such perfor-
mance guarantees. Wired virtualization solutions use Software-
Defined Networking (SDN) APIs to dynamically coordinate net-
work edges (e.g. routers, switch etc.); but don't require a change of
client device behavior because the last hop between the network
edge and the wired end device is an isolated full-duplex p2p link,
e.g., Ethernet. However, this is not the case with wireless LANs
(WLAN) as the last hop between the mobile device and the access
points is a shared medium. Moreover the current WiFi MAC proto-
col does not allow edge access points (APs) to control client uplink
transmissions and their 802.11 quality of service (QoS) settings.

We argue that the SDN framework needs to be extended to the
client devices to support several interesting capabilities and ser-
vices such as guaranteeing airtime resource to each virtualized
WiFi network slice. In addition, by integrating SDN APIs in the
client device, we can manage the uplink TX and the QoS over the
shared wireless medium, and provide end-to-end QoS control.

2. meSDN

Our solution is meSDN — mobile extension of SDN. As a proof-
of-concept, we design and implement a new WLAN virtualization
service that slices mobile devices via a Time Division Multiple Ac-
cess (TDMA) like scheduling, named pseudo-TDMA (pTDMA). By
using Linux Qdisc on end devices, pTDMA virtualizes (separates)
airtime resource between network slices while minimizing con-
tention between clients within a slice. pTDMA also allows client
wireless interfaces to improved power-efficiency utilizing their ac-
tive time and to sleep longer outside of the given transmission
windows.

As shown in Fig. 1, meSDN has three components in clients:
(1) airtime scheduler (Linux qdisc) (2) flow manager (e.g., Open
vSwitch, OVS), and (3) local controller. There is also a global net-
work controller that talks with the client local controllers.

Flow Manager is a software OpenFlow switch, e.g. Open vSwitch [1],
that monitors and manages mobile’s application traffic. To better
support various mobile apps’ needs, we extend OpenFlow statis-
tics APIs and measure burst duration & rate and inter-burst time,
and feeds them to the local controller for airtime scheduling. OVS
also takes per-flow QoS and access control actions. meSDN ex-
tends OVS further to interact with WiFi driver; this "Wireless Ex-
tension" enables the control plane to better monitor and manage

airtime resource.
Scheduler is a Linux Qdisc that implements airtime scheduling. It
starts/stops dequeueing of the outgoing flow based on the airtime
schedule given by the Local controller. The Qdisc also applies pri-
oritization and rate limiting to application flows, as instructed by
the control plane.

Local controller is userspace software that controls Flow Man-

End Device

Local Controller Applications

W‘ User Space
y

... 1) Policy

Ju

‘ TCP/IP

=
]
2 ! 1
b . oy Flow Manager (e.g., OVS)
3 1) per-slice/user/app OpenFlow Wireless ext.
~ | policy & QoS profile "
3 |
0 | 2) aggregated resource . Scheduler .
O | demand & QoS LinuxTC...Jl (e.g. Qdisc) :SSI, .
: iretx cnt,
requirement meSDN
3) real-time action &
airtime schedule meSDN API T :
WiFi Driver

Figure 1: meSDN Architecture.

ager and Scheduler. The local controller also provides application
awareness and generates flow-to-application mappings by mon-
itoring netstat logs; it can easily apply appropriate application-
specific SDN policy through OVS or Qdisc.

Global controller coordinates with the local controller in three
steps (also see Fig. 1). First, the global controller provides per-
slice, per-user, per-application policies and QoS profiles to the lo-
cal controllers, which then can apply the policies to application
flows without querying the global controller for every new flow.
The local controller send the resource and QoS requirements to
the global controller airtime scheduler (the 2nd step in Fig. 1). Fi-
nally, the global controller computes airtime schedules based on
the received per-client demands, and provides the schedules to
the local controllers (the 3rd step).

We envision that the flexible meSDN architecture will enable
more interesting services including e2e QoS controls, enhanced
security, fault diagnosis, etc. We believe, the ability to truly inspect
flows end-to-end and conduct diagnostic tests at the endpoints
may be one of the killer applications of meSDN.

3. REFERENCES

[1] Open vSwitch. http://openvswitch.org/.



