
Improving the performance of SPDY for mobile devices

Junaid Khalid1 Sharad Agarwal2 Aditya Akella1 Jitendra Padhye2

University of Wisconsin - Madison1, Microsoft Research2

SPDY [2] is an application layer protocol developed for
reducing web latency. It is estimated that about 3.6% of
all websites use SPDY today [3], but that statistics hides
how many web transactions use SPDY. It has rapidly gained
adoption across Google, Facebook, Twitter, Yahoo, Reddit,
and WordPress. While only a small fraction of all web-
sites use SPDY today, SPDY-capable proxies are being de-
ployed to provide the benefits of SPDY over the “last mile”
while traffic between proxies and the origin webserver re-
mains HTTP1.x for the time-being.

SPDY improves web performance through various mecha-
nisms including multiplexing multiple HTTP transfers over
a single connection, header compression, HTTP request pri-
oritization, and server push; which sends down content be-
fore it is requested. Push can help when the client is under-
powered and is slowly processing Javascript or app code, or
is waiting for the user to interact with the displayed content.

The relative benefits of multiplexing, header compression
and request prioritization have been measured and analyzed
by several blogs and research papers [6, 1, 4]. However, the
proactive pushing of HTTP content to the client has received
relatively less scrutiny. The promise of push in SPDY is
that through machine learning on prior access patterns or
otherwise, the server can intelligently push down content to
the client before it realizes it is needed, thereby significantly
reducing user-perceived latency.

Push is problematic for mobile devices because it can
waste both battery and bandwidth. This happens either
because the server blindly sends down the content which is
already in the client’s cache or it ends up sending content to
the client which is never consumed by the user.

A reasonable solution may be to simply turn off push when
the mobile client is on a limited data plan or has low battery.
This binary decision mitigates the worst case scenario, while
retaining the powerful latency advantage of push only in the
ideal scenario. We can do better.

We propose two basic mechanisms that the HTTP 2.0
standard should adopt to dynamically adjust the overall per-
formance (speed, battery consumption, data consumption)
of mobile clients:

• Cache hints – we propose a lightweight mechanism
for the client to indicate what cached content it has.
The server can then modulate its intended set of push
objects. When the client initiates the connection, it
sends the server an array of bloom filters with the first
HTTP request. The Bloom filter at index n of that
array will represent the objects which expire in less
than 2n seconds.

Client 

Proxy 
Server 

Internet Cellular Edge 

Figure 1: Architecture Overview

• Half-push and half-pull – recognizing the widespread
deployment of web proxies that already have or soon
will be upgraded to SPDY, we propose half-push and
half-pull to explore a new dimension in the proxy de-
sign spectrum. As shown in Figure 1, we envision
proxies that are deployed at the edges of cellular net-
works and that provide capabilities to both servers and
clients to cache content. The client can explicitly re-
quest a “half-pull” that will cause the content to be
temporarily held at the proxy and not traverse the
“last mile” until it is necessary. Similarly, the server
can “half-push” content to a proxy that is closer to the
client without incurring a battery and data cost.

Our preliminary evaluation based on the data from prior
work [5] of 6 popular apps shows that half-push and half-pull
reduce the bytes transferred by up to 4x for some applica-
tions as compared to regular push or prefetching. Half-pull
or half-push to a proxy incurs additional delay when the
client issues the regular pull – this delay is roughly 10ms as-
suming an LTE connection with 12.7 Mbps throughput and
3ms RTT to such a proxy co-located at the LTE tower.

We achieve this data reduction with a minimal proxy stor-
age overhead. The peak memory used at the proxy is less
than 500 KB for at least 95% of user session for each app.

1. REFERENCES
[1] Not as SPDY as you thought. http://www.guypo.com/

technical/not-as-spdy-as-you-thought/.

[2] SPDY IETF Draft. http://tools.ietf.org/html/
draft-mbelshe-httpbis-spdy-00.

[3] Usage of SPDY for websites. http://w3techs.com/
technologies/details/ce-spdy/all/all.

[4] J. Padhye and H. F. Nielsen. A comparison of spdy and
http performance. Technical Report MSR-TR-2012-102.

[5] L. Ravindranath, S. Agarwal, J. Padhye, and
C. Riederer. Procrastinator: Pacing mobile apps’ usage
of the network. In ACM MobiSys, 2014.

[6] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How speedy is spdy? In USENIX
NSDI, 2014.


