
Extended Abstract: Decelerating Suspend and Resume in
Operating Systems

(A workshop paper using the same title will appear at HotMobile’17)

Shuang Zhai, Liwei Guo, Xiangyu Li, and Felix Xiaozhu Lin
Purdue ECE

(a) A multikernel OS 

(prior art)

(b) Offloading suspend/resume 

via virtualization (this work)

CPU PM core

Virtual 

Execution

Suspend
Resume

DRAM IO

Kernel

Core A Core B

DRAM IO

Kernel A Kernel B

Single System Image

Figure 1: A comparison of two alternative OS structures for
harnessing heterogeneous, incoherent cores

1. MOTIVATIONS
Today’s mobile and wearable computers see a large num-

ber of intermittent, short-lived tasks such as push notifica-
tion, email sync, and “always-on” UI. The short-lived tasks,
as shown in recent work, drain a large portion of battery,
e.g. 29% on smartphones [1]. To execute a short-lived task,
the whole system exits from a deep-sleep state, runs user
code, and re-enters the deep-sleep state. The power state
transitions are performed by suspend/resume, a core power
management (PM) function in OS.

Ironically, despite critical to system energy efficiency, the
suspend/resume procedure itself is expensive. In running
a short-lived task, suspend/resume often dominates the en-
ergy consumption, sometimes incurring 10× higher energy
than the task’s user code execution [2] .

2. FINDINGS
To pinpoint the bottlenecks, we profile the Linux sus-

pend/resume on a variety of mobile SoCs. Our findings in-
dicate that suspend/resume is fundamentally slowed down
by IO: the CPU spends much of its time waiting (being not
only idle but also busy) for hundreds of IO devices to com-
plete their power state transitions. Unfortunately, shorten-
ing such transitions is difficult: the transition delay is often
bound by physical factors or interface standards; the slow
IO devices are diverse and platform-dependent; transitions
of multiple IO devices can hardly be parallelized.

The profiling suggests that suspend/resume poorly fits to-
day’s high-frequency, complex processors that are intended
for rich mobile applications. Instead, the OS suspend/re-
sume should be offloaded to miniature, low-power processors
which we dubbed “PM cores”. This goal, however, is chal-
lenged by the high complexity of the OS suspend/resume
code, the PM core’s instruction set architecture (ISA), and
the demand for remaining compatible with commodity OSes.

3. SOLUTIONS AND CONTRIBUTIONS
We present a novel virtual executor, as shown in Figure

1: running on a PM core, it completely takes charge of sus-
pend/resume by directly executing the main CPU’s unmodi-
fied kernel binary. This greatly reduces energy cost by keep-
ing the main CPU powered off for OS suspend/resume.

To fit a weak PM core, our virtual executor is purely
software-based, an approach previously believed too expen-
sive. To make it practical, we specialize the virtual executor
for the kernel suspend/resume path, rather than supporting
generic kernel code. The virtual executor consists of two
key components: a translator that dynamically translates
the main CPU’s kernel binary and executes it; a function
pruner that replaces generic, expensive OS functions with
specialized, simplified versions.

Of the two components, the binary translator’s overhead
is critical to the entire system’s efficiency – its software-
based cross-ISA translation, according to conventional wis-
dom, incurs prohibitive overhead. To tackle this problem,
our insight is to exploit the similarity between heterogeneous
ISAs, which are commonly seen among co-located modern
processors, as exemplified by the ARM A-series and M-series
cores. Through a set of key optimizations, we reduce the
translation overhead by 5× as compared to the state of the
art. Based on the measured power and overhead, we esti-
mate to reduce the total energy cost of suspend/resume by
up to 70% and extend the battery life by 30%.

We have made the following contributions:

• We quantify the Linux suspend/resume procedure on a
variety of SoCs and examine the causes of high energy con-
sumption and long delay;

• We offload the OS suspend/resume to an extremely low-
power core, which runs a novel virtual executor for executing
the unmodified kernel binary with low overhead;

• We describe a first-of-its-kind working prototype of the
virtual executor; at the time of writing, the prototype con-
tains 50.5K SLoC, of which 4.5K are new1. The preliminary
results show great promise.

4. REFERENCES
[1] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and

R. Vannithamby. Smartphone background activities in
the wild: Origin, energy drain, and optimization. In
Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking,
2015.

[2] M. Lentz, J. Litton, and B. Bhattacharjee. Drowsy
power management. In Proceedings of the 25th
Symposium on Operating Systems Principles, 2015.

1Generated using David A. Wheeler’s ‘SLOCCount’.

1


	Motivations
	Findings
	Solutions and Contributions
	References

