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ABSTRACT
We present a binary architecture with 60% fewer parameters and
50% fewer operations during inference compared to the current
state of the art for keyword spotting (KWS) applications at the cost
of 3.4% accuracy drop.
1 A BINARY NETWORK FOR KWS
KWS has become a popular always-on feature in smartphones,
wearables and smart home devices. It serves as the entry point for
speech based applications once a predefined command (e.g. “Ok
Google“, “Hey Siri”) is detected from a continuous stream of audio.
Because KWS applications are alwasy running they follow a very
eficient architectural design and are often implemented on small
dedicated microcontrollers. These devices are contrained in terms
of memory and compute capabilities, limiting the complexity and
memory footprint of the deployed model.

We compare our work to HelloEdge [3] following their microcon-
troller classification scheme and particularly focusing on the Small
(S) group, where the model size limited to 80kB and the maximum
number or OPs during inference is 6M. Likewise, we use Google’s
Speech Commands Dataset [2] to evaluate our architecture.

SystemOverview. The implemented KWS system is comprised
of two fundamental blocks where speech features are first extracted
from the 1s voice command input and are fed to a NN-based block
that outputs the id of the detected voice command. The system’s
macroarchitecture is depicted in Figure 1. We follow the same strat-
egy as in [3] to extract an array of 49 × 10 MFCC speech features
from the input speech signal and feed them to our network.

Architecture. We present a novel NN block containing the
following elements: three nested on-the-fly convolutional layers
(Figure 2) followed by a standard convolutional, max-pooling and
fully connected layers.

On-the-fly convolutions. Unlike standard convolutional neu-
ral networks (CNN), our architecture learns weighting coefficients
of deterministic binary basis that are combined in a linear fash-
ion manner to generated the filters. We use orthogonal variable
spreading factor codes1 of length 2n , n ∈ N, to generate these basis.

2 EVALUATION
We evaluate three configurations of BinaryCmd with a focus on
reducing on-device memory footprint and number of OPs per in-
ference pass.The three configurations only differ in the number of
filters, stride and ratio parameters used in our on-the-fly convolu-
tional layers. Intuitively, the smaller the ratio, the coarser the filters
and the bigger the model size savings would be, and vice-versa.

We compare BinaryCmd against DS-CNN and all the baselines
analysed in [3]. The preliminary results (Figure 3) show the poten-
tial of our binary architecture: up to 60%model size and 67% number
of OPs reduction at the expense of no more than 3.4% accuracy
1OVSF codes were introduced for 3G communication systems as channelizations codes
aiming to increase system capacity in multi-user access scenarios [1].
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Figure 1: System
architecture.
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Figure 2: BinaryCmd’s core.

loss when compared to DS-CNN. We have applied standard 8-bit
quantisation to the majority of the layers, meaning that further opti-
misation is possible. All three of our configurations simultaneously
achieve top accuracy-to-size (A2S) and accuracy-to-OPs (A2OPs)
ratios meaning that BinaryCmd is a good first step towards the
design of architecture capable of providing over 90% accuracy levels
with minimal memory footprint and low computational costs.
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This work has been implemented in TensorFlow [1] using as
base the source code provided in [14].

3 EVALUATION
We evaluate three con�gurations of BinaryCmd with a focus on
reducing on-device memory footprint and number of OPs per in-
ference pass while maintaining acceptable accuracy rates that out-
perform other models [4, 9–11] found in the recent literature with
comparable number of OPs. The three con�gurations share the ma-
jority of network parameters and only di�er in the number of �lters,
stride and ratio parameters used in our on-the-�y convolutional lay-
ers. The parameters used in our experiments are shown in Table 2.
For a given �lter dimensions dim = inCh ⇥ w ⇥ h ⇥ outCh there
are dim dim-dimensional OVSF orthogonal binary basis. The ratio
parameter speci�es the percentage of basis that are used to generate
a �lter. Intuitively, the smaller the ratio, the coarser the �lters and
the bigger the model size savings would be, and vice-versa.

Model Acc. Memory OPs Index
DS-CNN [14] 94.4% 38.6kB 5.4M 0
CRNN [14] 94.0% 79.7kB 3.0M 1
GRU [14] 93.5% 78.8kB 3.8M 2
LSTM [14] 92.9% 79.5kB 3.9M 3

Basic LSTM [14] 92.0% 63.3kB 5.9M 4
CNN [14] 91.6% 79.0kB 5.0M 5
Con�g-A 91.4% 24.5kB 1.8M 6
Con�g-B 91.0% 22.6kB 2.3M 7
Con�g-C 90.9% 15.7kB 2.6M 8
DNN [14] 84.6% 80.0kB 0.16M 9

Table 1: Comparison of three BinaryCmd con�gurations against DS-
CNN, the current state of the art for KWS applications, and other
baselines presented in [14] for microcontrollers limited to a maxi-
mum of 80kB of memory and 6M OPs.
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Figure 4: Results comparison against architectures in [14] for the
category of small (S) microcontrollers. DS-CNN has never been
tuned below 38.6kB and 5.4M OPs. All other con�gurations in
[14] result in larger and computationally more expensive models:
(189kB|19.8MOPs) and (497kB|56.9MOPs) formedium and large cat-
egories of microcontrollers.

We compare BinaryCmd against DS-CNN and all the baselines
analysed in [14]. Our con�gurations explore the void space of 1M-
3M OPs and 10kB-25kB. The preliminary results (Figure 4) show
the potential of our binary architecture: up to 60% model size and
67% number of OPs reduction at the expense of no more than
3.5% accuracy loss. Unlike in [14], where each architecture has
been optimally trained after performing an exhaustive search for
feature extraction and NN model hyperparameters, the work here
presented only modi�es the number of training steps from the
default parameters provided in [14] source code, leaving room for
more e�cient training set-ups. Furthermore, our architecture only
applies standard 8-bit quantisation to the weights of the second
and third convolutional layers inside the FlexModule, meaning that
further reducing the model’s memory footprint is also possible.

Con�g #Filters Strides [x, �] Ratios

A [64, 8, 32] [2, 2], [2, 2], [1, 1] [1.0, 1.0, 1.0]
B [64, 16, 16] [2, 2], [2, 2], [1, 1] [1.0, 0.5, 1.0]
C [16, 16, 16] [2, 2], [1, 1], [1, 1] [1.0, 1.0, 1.0]

Table 2: Parameters in BinaryCmd for each con�guration. All pa-
rameters are given in triplets since there are three convolutional
layers (see Figure 2).

4 SUMMARY AND FUTUREWORK
- 3 lines summary

- paging could enable using bigger models that would normally
be usable.
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Figure 3: Results comparison against architectures in [3] for the cat-
egory of small (S) microcontrollers limited to 6M OPs and 80kB.
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